1304 publications found
The image and perception of science and of scientists is a crucial topic, above all with regards to younger generations, the human capital of the future. For this reason, the National Research Council (CNR), in 2004, asked the IRPPS institute (Istituto di ricerche sulla popolazione e le politiche sociali) to carry out a sample survey of 800 people between the ages of 18 and 29 on the topic. Science and new technology emerged as the topics of most interest, in addition to medicine, history and economics. Scientific content in the mass media is considered to be satisfactory, whereas education in the field of science is considered to be less than satisfactory, above all in relation to the work environment. However, if research in Italy seems weak in the eyes of young people, scientists are not seen the same way but are considered society's second most important profession after that of the entrepreneur. The problem of trust in science is due, above all, to the politics of research, which do not encourage adequate investment in public and private sectors. A factor analysis technique was applied in order to identify models of attitude towards science of various subgroups within the population.
While knowledge-society is developing all around the world, science seems to be loosing its historical prestige in public perception, scientific vocations are declining among young people, "limit" on science is common subject of daily politics, research freedom is questioned in front of public good, scientists are dragged in front of public opinion. As a consequence, scientists are to be skilled in science communication. But communicating science is no more matter of "translating" scholar knowledge into lay language (popularization); it is mainly matter of crossing barriers of fundamental attitudes, understanding daily-life ends, sharing future scenarios and cultural values, becoming responsible for the societal dimension of science. Moreover, while confronting the coming Big Convergence (among nanosciences, bio-medical sciences, information and communication-sciences, neuro-cognitive sciences), science itself is called to cross barriers among disciplines, distinctions between pure and applied science, academic and industrial research, science and technology, etc. However, such crossovers are challenging for present education of scientists. The governance of the democratic knowledge-society not only demands more scientific education among citizens, but also a general revision of highest scientific curricula. What are the goals for educating scientists to public responsibility and participation? What are conceivable ways for joining the "two cultures" and integrating curricula? What cross-fertilizations are conceivable between natural and social sciences, scientific and humanistic education, specialised and more general formation?
The article proposes a reflection on science communication and on the communicative processes characteristic to the production of new-found knowledge. It aims to outline the role that sociology can play within this frame for greater understanding. The article first defines the main evolutionary trends in scientific research in recent decades, with particular reference to the emergence of new social actors. Following on from this, it will look at some of the epistemological conditions that may strengthen the sociologist's role in the cognition of scientific production. Using this as a premise, we will look at a typology for science communication and its components, as well as some of its governing principles. The conclusion of the article indicates the added value that can be gained from the use of such a model, with the particular aim of identifying indicators that allow the evaluation of scientific research in sociological terms as well as those already in existence.
Many lives could have been saved on 26 December 2004, when the tsunami unleashed by an earthquake of magnitude 9.0 off the coast of the Indonesian island Sumatra struck a dozen coastal villages along the Indian Ocean. Those lives could have been saved if, on that day, science communication had not resulted in a complete failure to communicate scientific information adequately in many cases, in different places and at different levels. A long time passed between the violent shock and the devastation caused by the tsunami waves in most cases, many hours.