1358 publications found
This paper will outline the very successful initiatives to define common communication strategies amongst the world’s high energy physics laboratories. These initiatives have been extremely successful in changing the communication practices of a worldwide community of high energy physics labs and these practices are now expanding to the community of synchrotron radiation laboratories. The payback has been extremely encouraging, with a much higher regard for the importance of communication in senior management and, perhaps coincidentally, major increases in funding of physical sciences in the United States and other countries
It’s hard to be a science journalist these days. Still tired because of the “Long night of Science“ (probably the 6th during this summer) he or she is informed about the next “Children’s University days” and another “girls day” coming soon – alongside the daily zapping through the 50 press releases of the informationsdienst wissenschaft1 (are there really 50 newsworthy things happening every day in the labs of every European country?), not to speak of the dozens of press packages and glossy brochures of the pharmaceutical industry as well as the test kits of new products like a tongue cleaner (of which the phenomenal results are – of course – “scientifically proved”). In 2006 a journalist sometimes would wish that science communicators would communicate a little bit less – giving himself a little bit more time to find his own stories – just by himself.
If Europe is to become a knowledge–based economy1 knowledge must be freely available in Europe. The results of research across Europe can not be left inside laboratories and libraries. It has to available to the citizens, young people and commerce of Europe. And the main source of information for all these groups is the mass media, yet large parts of European research do not allocate sufficient importance to media relations.
The attacks of September 11 2001 and in particular, the sending of letters containing anthrax spores the following October had a profound effect on society, and at the same time on science and its communicative mechanisms. Through a quanto-qualitative analysis of articles taken from four publications: two daily newspapers, the Corriere della Sera from Italy and the New York Times from the United States and two science magazines, Science and Nature, we have shown how the aforementioned events provoked the emergence of media attention regarding bioterrorism. A closer reading of the articles shows that today, science – including that found in science magazines – is closely related to politics, economics and the debate over the freedom to practice communicate. The very mechanisms of communication between scientists were changed as a result of this debate, as can be seen from the signing of the Denver Declaration in February 2003, which brought about the preventative self-censorship of publication of biomedical research findings.
In May 2004 the Balì Museum, Planetarium and interactive science museum, was opened to the public in Italy: 35 hands-on exhibits designed according to the interactive tradition of the Exploratorium in San Francisco, an astronomic observatory for educational activities, a Planetarium with 70 places. With a total investment of about three million euros, about two thirds of which were spent on restructuring the splendid eighteenth-century villa in which it is housed, the undertaking may be considered a small one in comparison with other European science centres. Three million euros: perhaps enough to cover the cost of only the splendid circular access ramp to the brand-new Cosmocaixa in Barcelona, an investment of one hundred million euros. But the interesting aspect of the story of the Balì Museum (but also of other Italian stories, as we shall see) lies in the fact that this lively and advanced science centre stands in the bucolic region of the Marches, next to a small town of only 800 inhabitants (Saltara, in the Province of Pesaro and Urbino), in a municipal territory that has a total of 5000. Whereas in Italy the projects for science centres comparable with the Catalan one, for example projects for Rome and Turin, never get off the ground, smaller ones are opening in small and medium-sized towns: why is this? And what does the unusual location of the centres entail for science communication in Italy? This Focus does not claim to tell the whole truth about Italian interactive museums, but it does offer some phenomenological cues to open a debate on the cultural, economic and political premises that favour their lives.
Following the example of the Exploratorium in San Francisco, interactive science museums are meant to be informal and enjoyable places where visitors, regardless of their age and background, are stimulated to practice their abilities to explore the world from a scientific point of view or to reacquire it in the case of adults who are far from science for professional reasons. Our study, which belongs to a relatively recent, but increasingly richer and complex tradition of researches on this topic, aims at contributing to answering the question whether, within the context of hands-on museums, this desired reacquisition of scientific exploration actually occurs for all visitors; more precisely, it aims at contributing to the discussion resulting from this question with reference to both possible answers and methods to find them. The study described below was carried out for a Science Communication Master thesis in Trieste (student: Monia Cardella, supervisor: Paola Rodari) and, therefore, it is inevitably limited: in fact, in order to deal with such a complex issue and to perform more detailed investigations on the field longer time and more resources would have been necessary. However, both methods used and results obtained from it, although provisional, are significant enough to deserve our attention.
The many facets of fundamentalism. There has been much talk about fundamentalism of late. While most people's thought on the topic go to the 9/11 attacks against the United States, or to the ongoing war in Iraq, fundamentalism is affecting science and its relationship to society in a way that may have dire long-term consequences. Of course, religious fundamentalism has always had a history of antagonism with science, and – before the birth of modern science – with philosophy, the age-old vehicle of the human attempt to exercise critical thinking and rationality to solve problems and pursue knowledge. “Fundamentalism” is defined by the Oxford Dictionary of the Social Sciences1 as “A movement that asserts the primacy of religious values in social and political life and calls for a return to a 'fundamental' or pure form of religion.” In its broadest sense, however, fundamentalism is a form of ideological intransigence which is not limited to religion, but includes political positions as well (for example, in the case of some extreme forms of “environmentalism”).
In addition to their intrusive presence in American schools, creationists - or more modern epigones thereof, known as “intelligent designers” - are also and unexpectedly to be found in other countries. Take the United Kingdom as an example. Over the past few years, Darwin’s homeland has actually been witnessing attempts to introduce literal faith in the Bible into school programmes in a way which does not significantly differ from the one adopted in the United States. It is multi-billionaire Howard H. Ahmanson who generously finances the Discovery Institute across the Atlantic, one of the dissemination centres of the creationist “creed”.
The American particle physics community is in jeopardy and may end up drowning in a boundless sea trying to grasp at non-existing funds, dragging US physics and science as a whole to the bottom. This is a price the most powerful and high-tech country of the world cannot afford, as warned by the editors of a report published in late April by the National Academy of Sciences1. Behind so much alarm is the International Linear Collider (ILC) – a large particle accelerator facility which, according to the report, should be built on American territory, if research on the elementary constituents of nature is to survive in the United States. The ILC will probably cost a total of five hundred million dollars in the first five years, whereas billions will have to be invested in the subsequent seven years. Hardly impressive, however, if compared with the Superconducting Super Collider (SSC), the biggest and costliest machine ever conceived in the history of science. Devised to describe the first instants of the universe, as many will recall, the SSC project was severely hampered by political and bureaucratic plots in 1993, when the Clinton administration decided to halt work on the accelerator, after ten years and approximately two billion dollars already spent.
I would like to celebrate not one, but two major news stories about evolution that help further cast the forces of intellectual darkness — meaning creationism and intelligent design — back into the shadows where they belong.