1328 publications found
The rapid spread of technologies involving the application of “Genetic Modification (GM)” raised the need for science communication on this new technology in society. To consider the communication on GM in the society, an understanding of the current mass media is required. This paper shows the whole picture of newspaper discourses on GM in Japan. For the Japanese public, newspapers represent one of the major sources of information on GM. We subjected the two Japanese newspapers with the largest circulation, the Asahi Shimbun and Yomiuri Shimbun, to an analysis of the full text of approximately 4000 articles on GM published over the past to perform an assessment of the change of reportage on GM. As for the most important results, our analysis shows that there are two significant shifts with respect to the major topics addressed in articles on GM by Japanese newspapers.
Basing mainly on author's direct involvement in some science communication efforts in India, and other reports, this contribution depicts and analyses the present science communication/ popularization scenario in India. It tries to dispel a myth that rural people don't require or don’t crave for S&T information. It discusses need for science and technology communication, sustaining curiosity and creating role models. Citing cases of some natural, 'unnatural' and organized events, it recounts how S&T popularization efforts have fared during the past decade and a half. It's made possible using print, AV and interactive media which, at times, require lot of financial inputs. However, this contribution shows that a number of natural and other phenomena can be used to convince people about power of S&T and in molding their attitude. The cases cited may be from India, but, with a little variation, are true for most of the developing and under- developed societies.
Will the use of the Web change the way we produce scientific papers? Science go through cycles, and the development of communication of science reflects the development of science itself. So, new technologies and new social norms are altering the formality of the scientific communication, including the format of the scientific paper. In the future, as PLoS One is experimenting right now, journals will be online hosts for all styles of scientific contributions and ways to link them together, with different people contributing to a body of work and making science more interdisciplinary and interconnected.
My intention is to analyze how, where and if grid computing technology is truly enabling a new way of doing science (so-called ‘e-science’). I will base my views on the experiences accumulated thus far in a number of scientific communities, which we have provided with the opportunity of using grid computing. I shall first define some basic terms and concepts and then discuss a number of specific cases in which the use of grid computing has actually made possible a new method for doing science. I will then present a case in which this did not result in a change in research methods. I will try to identify the reasons for these failures and analyze the future evolution of grid computing. I will conclude by introducing and commenting the concept of ‘cloud computing’, the approach offered and provided by major industrial actors (Google/IBM and Amazon being among the most important) and what impact this technology might have on the world of research.
This article offers a 1953-present day review of the models that have popularised DNA, one of the fundamental molecules of biochemistry. DNA has become an iconic concept over the 20th century, overcoming the boundaries of science and spreading into literature, painting, sculpture or religion. This work analyses the reasons why DNA has penetrated society so effectively and examines some of the main metaphors used by the scientists and scientific popularisers. Furthermore, this article, taken from the author's PhD thesis, describes some recent popularisation models for this molecule.
Dialogue in science communication is a necessity - everybody agrees on it - because science and technology issues are involved in so many aspects of the citizens life, and in so many cases can raise suspects, fears, worries or, on the contrary, expectations and hopes. But who are the possible interlocutors for scientists and policy-makers? Everybody, says Luisa Massarani, beginning with children and teenagers. Also in such controversial and sensitive issues like AIDS or GMO.
The practice of dialogue does not erase the conflicts that can be found upon solid diverging interests. But conflicts are not forcedly a trauma. More then an impossible abolition of diversity, it is important to promote a practice that helps everybody to express their own point of view looking for socially sustainable solution between the parts. But according to Sturloni, «Even in that case: not a dialogue meant to achieve a utopian unitary view able to level all divergences, but to allow the expression of different perspectives and of legitimate interests. The final aim should be to make a choice shared as much as possible within the legal system of a democratic country».
“Dialogue” is the trendy word of the moment. The word “dialogue” can be found in the call to access European funding, in the works of Science Communication scholars, in presentations of science education projects, in the mission of new science centres. “Dialogue” is also a word reported by mass media regarding politicians' and scientists' speeches on general issues as well as on local or specific problems such as environment, health, energy, etc... This new magic word is frequently repeated and opens many doors (or perhaps it simply helps to make a good impression). However, there is the risk of ignoring the real meaning and functioning of the word. JCOM is therefore asking a number of experts involved in “dialogue” the following questions: what does it really mean? What are the theoretical principles, the practical opportunities, but also the risks and limits of “dialogue”?
Scientific information from the moment it is produced by the scientific community until it reaches the non- expert audience through the newspapers is submitted to a complex process of adaptation. In this paper, we investigate the process of accommodating the scientific information provided by a primary scientific source (a peer-review journal) into journalistic discourse (a newspaper). As case studies we analyzed four scientific papers published by the peer-reviewed scientific journals Nature and Science, which were simultaneously used as primary scientific sources by Latin American newspapers. We observed that the process of accommodation into a new space, journalistic space, represents a significant shift in the content of the texts, including information that appears, disappears and is transformed in the process; transformations in the lexica, the style and the argumentation; a change in the hierarchy of the information; a shift in the information emphasized and in the social impact it might have.
To give a good public speech is art; but definitely more difficult is to organize a productive exchange of points of views between scientists, experts, non-experts and policy-makers on controversial issues such as a scenario workshop or a consensus conference. Many skills and a deep knowledge both of the topic and of the methodology are required. But this is the future of science communication, a field where the dialogical model will impose new and complex formats of communication and a new sensibility, using also the most traditional media. But are science communicators prepared for that? What is the state of the art of science communicator training?