Appendix

		Gen	Т	otal		
	Male		Female			
Age		1				
18-24	27	5.52 %	24	4.91 %	51	10.42 %
25-34	38	7.77 % ¦	45	9.2 %	83	16.98 %
35-44	60	12.28 %	56	11.45 %	116	23.73 %
45-54	56	11.45 %	66	13.5 %	122	24.95 %
55-64	62	12.67 %	55	11.25 %	117	23.92 %
Education Level						
Lower Secondary School	8	1.6 %	12	2.5 %	20	4.09 %
Middle Secondary School	26	5.3 %	32	6.5 %	58	11.86 %
Apprenticeship	77	15.7 %	75	15.3 %	152	31.1 %
Technical Diploma	24	4.9 %	24	4.9 %	48	9.82 %
High School Diploma	40	8.2 %	44	9.0 %	84	17.2 %
University	59	12.2 %	53	10.9 %	112	22.93 %
PhD	5	1.0 %	3	0.6 %	8	1.64 %
Other	1	0.2 %	1	0.2 %	2	0.41 %
Student	3	0.6 %			3	0.61 %
Missing*			2	0.2%		
Total	243	49.7%	246	50.3%	489	100 %

Table 1: Socio-demographics of the Sample: Gender, Education Level and Age Group (n = 489, in Absolute Numbers and Percentages).

	N	М	SD	Т	df	р	Cohen's d
Highly Realistic	241	2.00	1 25				<u> </u>
(A1, A2)	241	2.90	1.55				
				7.0	489	<.001	.63
Stylized	250	2 07	1 27				
(A3, A4)	200	2.07	1.21				

Table2:ManipulationCheck:PerceivedRealismofAvatarsNote.Items used to measure perceived realism: "The person in the science video seems to me..." (1 =computer-animated; 5 = real | 1 = replica; 5 = original | 1 = digitally copied; 5 = authentic Item pairs wereaveraged into an overall Realism Scale.

	Ν	М	SD	Т	df	р	Cohen's d
Female Avatar	004	4.40	1.01				
(A1, A3)	231	4.48	1.01	05.44	474	. 004	0.05
Male Avatar				35.41	474	<.001	3.25
(A2, A4)	245	1.32	0.94				

Table3:ManipulationCheck:PerceivedGenderofAvatarsNote. Item used to measure perceived avatar gender: "The person in the video was clearly a woman."(1 = strongly disagree; 5 = strongly agree)

	Realism		Gender		Realism*Gender		
		η²		η²		η²	۲²
Expertise	\checkmark	.010	\checkmark	.021	\checkmark	.014	.038
Integrity	\checkmark	.012	×		×		.02
Benevolence	\checkmark	.026*	×		×		.023

Table 4: Separate ANOVAs for Trustworthiness Dimensions (summarized). Notes. \checkmark = significant main-/interaction effect (p < .05), x = no significant main-/interaction effect (p > .05), r^2 = corrected R-square. *p < .001.

Source	df	MS	F	p	Partial η²
Degree of Realism	1	3.96	4.81	.029	.010
Gender	1	8.45	10.26	.001	.021
Degree of					
Realism*	1	5.47	6.64	.010	.014
Gender					
Error	481	.823			
Total	485				

Table 5: ANOVA for Expertise (Main study). Note. R^2 = .044 (corrected R^2 = .038); MS = Mean Square.

Source	df	MS	F	p	Partial η²
Degree of Realism	1	4.91	5.88	.016	.012
Gender	1	3.12	3.73	.054	.008
Degree of					
Realism*	1	2.65	3.17	.076	.007
Gender					
Error	476	.836			
Total	480				

Table 6: ANOVA for Integrity (Main study). Note. $R^2 = .027$ (corrected $R^2 = .020$); MS = Mean Square.

Source	df	MS	F	p	Partial η²
Degree of Realism	1	10.66	12.55	<.001	.026
Gender	1	1.02	1.2	.274	.003
Degree of					
Realism*	1	.484	.57	.451	.001
Gender					
Error	476	.850			
Total	480				

Table 7: ANOVA for Benevolence (Main study). *Note.* $R^2 = .029$ (corrected $R^2 = .023$); MS = Mean Square.

Dependent Variable	F	df1	df2	p
Expertise	1.85	3	481	.137
Integrity	.47	3	476	.706
Benevolence	.05	3	476	.986

Table 8: Levene's Test for Homogeneity of Variances. *Note.* Levene's Tests was not significant (p > .05), indicating equal variances.

In most cases, people who are color-blind have a so-called red-green weakness. However, there may soon be a cure thanks to a research team at the University of Tübingen. Using gene therapy, they introduce the correct gene into the eye via a virus, which then forms the correct color receptor proteins. The research team has already done this in a study on skull monkeys. And the experiment was successful: despite their poor eyesight, the monkeys were able to identify red and green color spots.

Figure 1: Standardized Video Script Used Across Avatar Conditions. Note: Text retrieved and adapted from Α one-minute text excerpt from the YouTube video https://www.youtube.com/watch?v=r0jXfwPQW9k&t=17s (MAITHINK 2018). Х, Narrative perspective in the pretest: '[...] But maybe my research will soon provide a cure. Through gene therapy: I use a virus to introduce the right gene into the eye, which then produces the right colour receptor proteins. In my research, I have already done this in skull monkeys. [...]'

Error bars: 95% CI

Figure 2: Interaction of Realism and Gender on Perceived Expertise. *Note.* Dependent variable = Expertise Index; measured using 6 bipolar item pairs (*competent; professional; experienced; intelligent; well educated; qualified*) of the METI scale (averaged). All items were measured on a 5-point Likert scale, where 1 indicated the lowest and 5 the highest rating.