Supplementary Material C

Detailed statistical results

> cramers_results

		Practice	CramerV	p_value
Cramer	٧	Q11.1_Field_Trip	0.08948	0.488407811
Cramer	٧1	Q11.2_Museums	0.27080	0.001408230
Cramer	V 2	Q11.3_Science_Centres	0.26720	0.001675972
Cramer	٧3	Q11.4_Research_Centres	0.11350	0.315817560
Cramer	٧4	Q11.5_Workshops	0.12570	0.243395302
Cramer	۷5	Q11.6_Exhibitions	0.17500	0.064559446
Cramer	٧6	Q11.7_Lectures	0.05438	0.767462619
Cramer	٧7	Q11.8_Debates	0.13680	0.187154379
Cramer	٧8	Q11.9_Science_Fairs	0.21430	0.016404224
Cramer	۷9	Q11.10_Books	0.11740	0.290996046
Cramer	V10	Q11.11_Scientific_Papers	0.05994	0.725010722
Cramer	V11	Q11.12_Dissemination_Articles	0.13770	0.183078313
Cramer	V12	Q11.13_Opinion_Articles	0.08247	0.544070222

Image 1 - Cramér's V results

> kw_results

		Practice	KW_statistic	df	p_value
Kruskal-Wallis	chi-squared	Q11.1_Field_Trip	10.8386291	2	0.004430182
Kruskal-Wallis	chi-squared1	Q11.2_Museums	10.6342825	2	0.004906761
Kruskal-Wallis	chi-squared2	Q11.3_Science_Centres	1.0557729	2	0.589850340
Kruskal-Wallis	chi-squared3	Q11.4_Research_Centres	5.1176188	2	0.077396834
Kruskal-Wallis	chi-squared4	Q11.5_Workshops	13.0235184	2	0.001485863
Kruskal-Wallis	chi-squared5	Q11.6_Exhibitions	8.5109814	2	0.014186128
Kruskal-Wallis	chi-squared6	Q11.7_Lectures	11.8949124	2	0.002612478
Kruskal-Wallis	chi-squared7	Q11.8_Debates	9.1423327	2	0.010345886
Kruskal-Wallis	chi-squared8	Q11.9_Science_Fairs	6.1108364	2	0.047103018
Kruskal-Wallis	chi-squared9	Q11.10_Books	5.1089851	2	0.077731665
Kruskal-Wallis	chi-squared10	Q11.11_Scientific_Papers	9.0074597	2	0.011067639
Kruskal-Wallis	chi-squared11	Q11.12_Dissemination_Articles	8.6910882	2	0.012964452
Kruskal-Wallis	chi-squared12	011.13_Opinion_Articles	0.6451296	2	0.724288997

Image 2 - Kruskal-Wallis results

Average silhouette width: 0.18

Image 3 – Silhouette plot

A silhouette plot provides a visual measure of how well each data point aligns with its assigned cluster. For k=2, our silhouette plot shows two distinct "blocks," each corresponding to one of the two clusters. We obtained an **average silhouette width of** ~0.18, indicating **moderate-to-weak** separation overall. Nevertheless, almost all points in Clusters 1 and 2 have positive silhouettes, suggesting that most observations are reasonably placed in their respective clusters. The **mean silhouette** is higher for Cluster 1 (~0.24) than for Cluster 2 (~0.12), implying that **Cluster 1** is more cohesive (its members are more similar to each other), whereas **Cluster 2** exhibits greater internal variation. In practical terms, this indicates that geoscientists in Cluster 1 share more commonalities in their communication practices or training/self-efficacy levels, while those in Cluster 2 show more diversity. Despite the moderate overall silhouette, we adopted k=2 based on both interpretability and the silhouette method's indication that no other k provides a substantially better separation.

Image 4 - Visualization of the two identified clusters among geoscientists with PAM algorithm

```
> chi_results
$Families
        Pearson's Chi-squared test
data: table(dados_paper_3$Q10_Training, dados_paper_3$Q13.11_Families)
X-squared = 6.7535, df = 2, p-value = 0.03416
$Local_Communities
        Pearson's Chi-squared test
data: table(dados_paper_3$Q10_Training, dados_paper_3$Q13.14_Local_Communities)
X-squared = 5.1719, df = 2, p-value = 0.07532
$Museums
        Pearson's Chi-squared test
data: table(dados_paper_3$Q10_Training, dados_paper_3$Q11.2_Museums)
X-squared = 13.131, df = 2, p-value = 0.001408
$Science_Centres
        Pearson's Chi-squared test
data: \quad table (dados\_paper\_3\$Q10\_Training, \ dados\_paper\_3\$Q11.3\_Science\_Centres)
X-squared = 12.783, df = 2, p-value = 0.001676
$Science_Fairs
        Pearson's Chi-squared test
data: table(dados_paper_3$Q10_Training, dados_paper_3$Q11.9_Science_Fairs)
```

Image 5 - Chi-square results

X-squared = 8.2204, df = 2, p-value = 0.0164