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Overview of ‘Imagining the Sun’ analysis 
 
The questionnaires 

 

 
Figure 1 Example distributions of responses.  The figure shows the distribution of student response to a number of 
questions. The pre-activity responses are shown on the left and the post-activity responses are shown on the right. This is 
from a Primary School. Results are split into girls (G) and boys (B). 

 
The school children involved in the outreach project were given questionnaires which asked 
them about their opinions on several statements. They were able to rate their feelings on a 
scale that went from of ‘strongly disagree’ to ‘strongly agree’ with 5 intervals.  
 
An example of summary data from the survey responses from a primary school is shown in 
Figure 1, where we have relabelled the categories from 1 (‘strongly disagree’) to 5 (‘strongly 
agree’). The original scale presented to the children was a series of faces with expressions 
from sad to happy with textual indicators to the sentiment, i.e. ‘not very good’ or ‘not at all’ 
for the lowest rank category, and ‘very good’ or ‘lots’ for the highest rank category. This 
representation can be classed as a Likert-type Scale. We note that the numerical labels 
assigned by us in the summary plot infer no information about the nature of the intervals 
between the categories/levels, i.e., there is no guarantee that interval between the categories 
is equally spaced. 
 
 
 
Working with Ordinal data  
 
Likert-type scale data are ordinal, meaning there are a discrete number of categories/levels 
which have a clear ordering, but the distance between categories/levels is not known. The 
category widths may also not represent equal increments. 
    A typical approach to analysing Likert-type data of this form is to assume that the data is 
metric, and apply metric methodology, e.g., taking the mean of the scores. However, it has 
been suggested that applying metric models to ordinal data can lead to misinterpretation 
(Liddell & Kruschke, 2018). As such, we follow the suggestion of Liddell & Kruschke, and 
analyse the data with an ordinal model, in this case an ordered-probit model. 
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What is the difference between the metric and ordinal models? Here, the categories 1 to 5 
represent responses to a question on a Likert-type scale. A metric model assumes that the 
probability of a response is the normal probability density at that response value. This 
approach inherently assumes the distance between responses is equal. The ordered-probit 
model, however, assumes that the probability of a response is the cumulative probability 
between two thresholds on an underlying latent continuum. For the ordered-probit model, 
the latent continuum is considered to be a Normal distribution with some mean and standard 
deviation. Determining the latent parameters is referred to as ordinal regression. 
 
 
 
Analysis of data 
 
In the following we focus on two of the questions that we believe can inform us about the 
career aspirations of the students, namely i) Would you like a job that involved science?; ii) 
How much do you like science?. We are interested in how the response to these questions 
changes after the students have had an interaction with a researcher. 
 
The model 
To estimate the change in response, we model the pre and post survey answers to each 
question with an ordered-probit model. The model assumes that the latent distribution is a 
normal distribution, 𝒩(𝜇, 𝜎), and requires estimating the mean, 𝜇, the standard deviation, 
𝜎, along with the threshold values between the intervals, 𝜃𝐾 (with 𝐾 thresholds). Due to the 
nature of the problem, if 𝜇, 𝜎, and 𝜃𝐾 are be modelled jointly, there is then non-identifiability 
in the observational model (i.e., there is no unique solution). One way to navigate this 
problem is that two of the parameters must be fixed to remove the degeneracy. Two options 
are to: i) fix the mean and the standard deviation of the latent normal; or ii) fix the outer 
thresholds and estimate the interior thresholds (of which there are 𝐾 − 2).  
  Here, we choose to fix the outer thresholds. The number of thresholds used varies for each 
question and depends upon the response categories/levels containing data. For example, 
there are responses at each of the 5 levels for the data shown in Figure 3, hence there are 
four thresholds used (𝐾 = 4), with two fixed at the  𝜃1 = 1.5 and 𝜃4 = 4.5. For the data 
shown in Figure 6, the post-workshop survey has four levels with data, hence we use three 
thresholds and  𝜃1 = 2.5 and 𝜃3 = 4.5. An alternative approach is to come up with a 
principled prior model that can regularise the cut-points, which avoids fixing model 
parameters (see Betancourt 2019).  
 
To estimate the model parameters, we follow a Bayesian approach as outlined in Kruschke 
(2015). We are interested in calculating the posterior distribution, 𝑝(𝜗|𝑦), which describes 
probability of the parameters, 𝜗, (i.e., the mean, standard deviation, and interior thresholds) 
given the data, 𝑦. To obtain the posterior, we require a likelihood function and prior 
distributions for the parameters. 
 
The likelihood function gives the probability of outcome k given fixed model parameters, 𝜗:  
 

𝑝(𝑦 = 𝑘|𝜗) = Φ (
𝜃𝑘−𝜇

𝜎
) − Φ (

𝜃𝑘−1−𝜇

𝜎
), 
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where Φ is the cumulative distribution function for the normal distribution. We supplement 
the likelihood with the prior distributions for the mean, standard deviation, and threshold 
values. We again follow Liddell & Kruschke, using weakly informative priors. For the latent 
mean parameter, we specify a normal prior density function: 
 

𝜇~𝒩((𝐾 + 1)/2, 𝐾), 
 
with the prior mean being the midpoint of the ordinal scale and standard deviation equal to 
the number of ordinal categories. 
 
For the latent standard deviation, we set a uniform prior density,  
 

𝜎~𝒰(0,10𝐾). 
 
And for the threshold values, we set a normal prior density, 
 

𝜗𝑘~ 𝒩(𝑘 + 0.5, 2) for 𝑘 = 2, 𝐾 − 2. 
For each question, we construct the model such that the interior thresholds are the same for 
both pre and post responses but let the latent mean and standard deviations differ. This 
assumes that the respondents did not change their perception on the intervals between levels 
in the time between the pre and post questionnaires. Due to small samples sizes (and only 2 
groups per education level) we group together responses from the different schools. An 
alternative option would be to undertake a hierarchical approach, modelling the parameters 
for each school as being distinct but drawn from common population distributions (see, e.g., 
Gelman et al. 2014).  
 
Estimating the posterior distribution 
To obtain the joint and marginal posterior distributions for the parameters, we employ 
Markov-Chain Monte Carlo (MCMC) sampling, using the MCMC sampler JAGS (Plummer 
2003). The quality of the samples drawn are analysed with the standard methods, namely 
through calculation of the auto-correlation coefficients of the sample trace and the Gelman-
Rubin �̂� statistic (see, e.g., Kruschke 2015; Gelman et al. 2014). There is no indication of 
convergence issues for the sampling. 
 
Results 
Before examining the model results, we should examine whether the model is able to 
accurately describe the data. One such method of doing this is to compare the posterior 
predictive distribution to the data, i.e., a posterior predictive check (e.g., Gelman et al. 2014). 
The posterior predictive distribution is the distribution of unseen values, conditioned on the 
values we have already seen. Any obvious discrepancies between the posterior predictive 
distribution and the distribution of our data would call into question our modelling choices. 
Figure 2 shows an example of the data for a question and the posterior predictive distribution 
for each response, displaying the posterior mean value of each response category and the 
95% Highest Density Interval (HDI). As can be seen, there is good agreement between the 
observed and predicted distributions. 
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Figure 2 Data distribution and posterior predictive distributions. Primary data (Would you like a job the involved science?). 
Left is the distribution of the responses for the pre survey (yellow) and posterior predictive means (blue dots) and 95% HDI 
(blue lines). Right is for the post survey. 

 
 
In terms of the examining the impact made on the 
children’s attitudes, we are not so much interested in 
what the posterior distributions of parameter values 
(e.g., the latent mean, etc.) are for each set of 
observations. Of real interest is the difference between 
opinions after the intervention. One way that this can be 
assessed is by looking at the effect size: 
 

𝑒𝑓𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒 =  
𝜇𝑝𝑜𝑠𝑡−𝜇𝑝𝑟𝑒

0.5√𝜎𝑝𝑟𝑒
2 +𝜎𝑝𝑜𝑠𝑡

2
, 

 
which is the difference between means scaled by the 
pooled standard deviations (this is known as Cohen’s d). In 
this calculation we use the samples from the joint 
posterior distributions of latent mean and standard 
deviation to calculate the posterior distribution for the effect size, which is shown in Figure 3. 
The mean of the effect size is larger than zero, which would suggest that there has been a 
positive shift in the children’s attitudes towards whether they would like a job that involved 
science. However, the mean value is <0.1, which can be classed as a small effect. Furthermore, 
it can be seen there is a significant probability associated with a null/negative result. This 
means that we cannot be certain about the effect size and that there has been a positive 
change in attitudes.  
 
In Figure 4 we show similar results for the question ‘How much do you like science?’.  The 
posterior predictive checks again demonstrate that the ordered probit model provides a 
reasonable description of the observed data. The right-hand panel displays the posterior 
distribution for the effect size, and the mean of the effect size is positive but very small - close  
 

Figure 3 Posterior distribution for effect 
size.  The orange curve and shaded region 
represents the posterior density and the 
black vertical line is the mean effect size. 
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Figure 4. Results for ‘How much do you like science?’ (Primary). The left and middle panel show the distribution 
of responses (yellow) and the posterior predictive distributions for the ordered-probit model (blue points and 
lines). The right-hand panel shows the posterior distribution of the effect size. 

 

 
Figure 5. Results for ‘I am good at science?’ (Secondary). The left and middle panel show the distribution of 
responses (yellow) and the posterior predictive distributions for the ordered-probit model (blue points and 
lines). The right-hand panel shows the posterior distribution of the effect size. 

 
to zero. As with the previous question, this suggests the effect size is small but the uncertainty 
in the value is too large to make meaningful statements about its actual value. 
 
In Figure 5 we show similar results for the question ‘I am good at science?’ (Secondary). The 
posterior is similar to our previous examples, although in this case the mean of the effect size 
is negative but small. 
 
 
No More Marking 
 
In addition to the questionnaire, the students were also asked to ‘Write or draw what the Sun 
makes you think about’. We wanted to measure whether the students would include a greater 
amount of scientific content in their answers after the intervention.  In order to assess the 
results, No More Marking was used. The tool enables comparative judgement of pieces of 
work. The data returned from the tool are `quality` scores, based on a Rasch logistic model 
(Bradley-Terry-Luce model, see. Wheadon et al., 2020). Both pre and post responses were 
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assessed together, meaning the scores provided the relative `quality` of all responses (as 
opposed to relative quality of either pre or post responses alone). The Bradley-Terry-Luce 
model assigns scores around a zero mean, which were rescaled between 0 (lowest content) 
and 100 (highest content).   
    Using the No More Marking results, we take the scaled scores and calculate the difference 
between the pre and post scaled scores for each student. We are interested in whether there 
is positive change is scores for the students. One way to assess this is to frame the differences 
between scores as a binomial problem. An increase in a quality score for an individual student 
can be classed as a success, while a decrease in score is classed as a failure. 
 
One could argue that, should there be no impact from the intervention, then the number of 
successes and failures should be binomially distributed with the relative frequency of success 
being 50%, i.e., we should expect roughly equal numbers of positive and negative quality 
score differences. If there is a positive impact, then the 
relative frequency for success should be greater than 
50%. A null hypothesis for such a test could be  𝐻0: 𝜃 =
0.5  and our alternative hypothesis is 𝐻1: 𝜃 ≠ 0.5. 
 
To examine the relative frequency of success, we 
undertake a Bayesian analysis of the differences 
between post and pre quality scores. 
 
For the likelihood we use is a Bernoulli distribution, with 
a probability mass function:    
 

𝑝(𝑘)~𝜃𝑘(1 − 𝜃)1−𝑘, 
 

Where 𝜃 is the relative frequency of a success (𝑘 = 1) 
and (1 − 𝜃) is the relative frequency of a failure (𝑘 = 0). 
We put a beta prior on the probability of success, with 
the shape hyperparameters set to 𝛼 = 2, 𝛽 = 2, hence 
this is a weak prior centred on 𝜃 = 0.5. 
 
The posterior distribution for 𝜃 is shown in Figure 6. The mean value is 0.62, which suggests 
that there has been an increase in the scientific content in the pictures/words used by the 
students. However, the posterior distribution for 𝜃 is broad and covers 𝜃 = 0.5, with ~5% of 
the probability mass at or below 𝜃 = 0.5. Hence, we are not able to confidently rule out the 
possibility that the intervention had no influence on the students.  
 
A hypothesis test can be carried out to examine whether there is evidence against the null, 
using Bayes factors (namely the Savage Dickey ratio, see, e.g., Wagenmakers et al., 2010). 
Such a test confirms that, given the current results, there is not strong enough evidence to 
reject the null. 
 
 
 
 

Figure 6. Posterior distribution for relative 
frequency of success, θ. The vertical line 
shows the mean value, while the horizontal 
line indicates the Highest Density Interval 
(HDI), i.e. the region that contains 94% of the 
probability mass. 
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