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Information visualization could be used to leverage the credibility of displayed scientific
data. However, little was known about how display characteristics interact with individuals’
predispositions to affect perception of data credibility. Using an experiment with 517
participants, we tested perceptions of data credibility by manipulating data visualizations
related to the issue of nuclear fuel cycle based on three characteristics: graph format, graph
interactivity, and source attribution. Results showed that viewers tend to rely on preexisting
levels of trust and peripheral cues, such as source attribution, to judge the credibility of
shown data, whereas their comprehension level did not relate to perception of data credibility.
We discussed the implications for science communicators and design professionals.
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   Commonly described as a “computer-supported, interactive visual representation of
abstract data” [Card, Mackinlay and Shneiderman, 1999, p. 9], information visualization
has undergone a surge in its number of applications to science communication in the past
twenty years [Welles and Meirelles, 2014]. Innovative forms of data visualizations, ranging
from simple proportional area charts showing global carbon footprints [e.g. Lavelle, 2013]
to complex 3D animations representing the results of biomedical scanning [e.g.
Animation World Network, 2015], have gained increasing popularity among
the scientific community. Scientists, researchers, and data professionals have
employed computational visualizations to reveal data patterns that are not discernible
when presented in non-visual formats. Interactive visual representations are
used to augment analytical reasoning processes, which empower audiences to
explore visual data to obtain decision-supporting insights and knowledge [Fisher,
Green and Arias-Hernández, 2011; Thomas and Cook, 2005]. More recently,
the rise of data journalism has fueled interest in visual narratives in which an
interactive visual plays a vital role in engaging a mass audience [Segel and Heer,
2010].


   For science communicators, the potential utility of information visualization expands
beyond visually representing a dataset or empowering calculative analysis. Information
visualization and other forms of visual displays have been put forward as tools to facilitate
public understanding of science and to mitigate the persistent influence of misinformation
[e.g., Dixon et al., 2015; O’Neill and Smith, 2014]). For instance, visuals (e.g., pie charts)
were shown to be more effective than text-only materials when conveying the scientific
consensus on climate change to people with skeptical views [van der Linden, Clarke and
Maibach, 2015; van der Linden et al., 2014]. In addition, individuals viewing visual
exemplars accompanied with a textual description of the debunked MMR-autism linkage
ended up having more accurate views than those reading two-sided information
with no visuals [Dixon et al., 2015]. More importantly, people turned out to be
less likely to disregard messages that threaten their beliefs or group identities if
they were encouraged to make sense of the data through a visual display and if
scientific credibility was leveraged in the process [Hall Jamieson and Hardy,
2014].


   In spite of the growing interest in leveraging scientific credibility through visual techniques,
little theory has considered the effects of visual characteristics, such as graph format and


source attribution, on the perceived credibility of visualized data. To our knowledge, no
studies examined how people assess the credibility of visually displayed data based on their
predispositions, such as attitudes toward data source, numeracy skills, and self-perceived
efficacy. With these considerations in mind, we intended to examine the effects of extrinsic
factors, specifically visual format, interactivity, and source attribution, on lay audiences’
perception of data credibility. We also tested the relationship between perception of data
credibility and individuals’ predispositions, comprehension, and evaluations of design quality.



   

1     Nuclear fuel cycle as a case study

To examine the aforementioned processes, we chose to use the issue of nuclear fuel cycle
as a case study. The term “nuclear fuel cycle” refers to all activities involved in the
production of nuclear energy, which typically includes uranium mining, enrichment, fuel
fabrication, waste management and disposal. Depending on the specification (e.g.,
once-through or advanced cycles), nuclear fuel cycles can impose varying economic and
environmental influences on local communities adjacent to nuclear facilities [see Wilson,
2011, for a review]. As of 2016, there were 99 nuclear reactors in 30 states in the United
States, producing 19.7% of the total electrical output and 63% of carbon-free electricity
[World Nuclear Association, 2018]. However, despite its reliance on nuclear energy,
the U.S. government had not granted permission to construct any new reactor
since 1977 until 2013, largely because of public fears resulting from the Three
Mile Island accident in 1979 [World Nuclear Association, 2018]. Nonetheless,
public opinion remained generally favorable toward nuclear energy after the 2011
Fukushima Daiichi nuclear accident in Japan, as 60% of Americans regarded
nuclear power generation as “inevitable” [Kitada, 2016]. In addition, the tone of
English-language tweets on nuclear energy had shifted from being predominantly
pessimistic to neutral over the first nine months after the Fukushima accident [Li et al.,
2016].


   While public support did not drastically decline after Fukushima, local opposition to
expanding nuclear energy never ceases. For instance, despite being a supplier of
affordable power to the New York City and Westchester County, the Indian Point power
plant was planned to shut as soon as 2021 due to the “serious risks posed to the
surrounding communities and the environment” [Yee and McGeehan, 2017, para. 7].
Activists, local officials and concerned citizens were worried about the potential risks and
used the Fukushima Daiichi nuclear accident to galvanize support for shutting down the
Indian Point power plant.


   Given the political controversy surrounding the domestic use of nuclear power,
scientists and technical experts alike are obligated to demonstrate the risks and benefits of
nuclear energy to concerned citizens and community leaders. In particular, to
maximize the legitimacy of their policy decisions, policymakers and local officials
would need to justify their decisions based on scientific data and an empirical
comparison of the performance of different fuel cycle options [Li et al., 2018]. Indeed,
there are a few simulation and visualization tools being developed nationwide


with an aim to inform policymakers’ decisions [see Flanagan and Schneider,
2013, for an example]. The issue of nuclear fuel cycle hence presents an ideal
context to test how the presentation format of scientific data might influence
nontechnical audiences’ perception of data credibility. An empirical testing of
the effectiveness of interactive visualizations will not only shed lights into the
cognitive mechanism underlying people’s processing of such information, but
also assist scientists with refining their visualization tools to achieve a better
end.


   Nevertheless, to avoid the potential confounding impact of individuals’ preexisting
attitudes toward nuclear energy on their perception of data credibility, we accompanied
the tested visuals with neutral and highly technical discourse, such as costs of “wet
storage,” “dry storage,” “repository,” and “waste recycling.” Such discourse should
prevent participants from linking a technical comparison of fuel cycle performance to
societal debates of nuclear energy. To ensure the scientific validity of shown stimuli, we
teamed up with nuclear scientists at a research university to develop visualizations as
experimental stimuli.



   

2     Perception of data credibility

Data credibility is one of the most important components of data quality [Wang and
Strong, 1996]. Individuals often evaluate data credibility based on their perceptions of
characteristics such as accuracy and trustworthiness — an overarching category that
includes aspects of currency, completeness, internal consistency, and subjectivity [Wang
and Strong, 1996]. Not surprisingly, when people perceive a piece of information to be
highly credible, they often develop positive attitudes toward its source [e.g. Hall Jamieson
and Hardy, 2014]. In particular, information sources will be judged favorably “when
identifiable characteristics of the source, content, delivery, and context prompt
the conclusion that the communicator has expertise on the issue at hand and
interests in common with the audience” [Hall Jamieson and Hardy, 2014, p. 13599].
For example, when people perceive a commercial website to be credible and
informative, they are more likely to build a relationship with the organization who
owns it [Lowry, Wilson and Haig, 2014]. The leveraged favorability resulting
from evidence exposure might also minimize the likelihood that audiences will
reject the conveyed message due to biased processing [Hall Jamieson and Hardy,
2014].



   

2.1     Visual format

The format of a visual display usually plays a dominant role in shaping viewers’ perceived


credibility of the shown content. For instance, when evaluating the credibility of a website,
people often mentioned the aesthetic appearance, such as layout, typography, images, and
color themes [Fogg et al., 2003]. Designers commonly manipulate certain visual
characteristics to give the appearance of credibility. For example, icons that look
more dated usually imply longevity and stability and may increase perception of
credibility for an old-fashioned company [Lowry, Wilson and Haig, 2014]. In
contrast, logos with pieces of characters intentionally missing (termed “incomplete
typeface logos”) reduced perceptions of brand trustworthiness for certain companies
[Hagtvedt, 2011]. In other words, communicators can boost perception of credibility by
incorporating visual cues that imply relevant concepts, such as sound experience or
professionalism.


   In a similar vein, researchers found the appearance of being “scientific” could increase
message persuasiveness through elevating perceptions of credibility. Tal and Wansink
[2016] randomized participants into two treatment groups, with one group reading a
verbal narrative about a new medication that ostensibly enhances the immune system and
reduces occurrences of common cold; the other group read the same message
accompained by a bar graph showing the enclosed data. Compared to the control group,
people who saw the bar graph were more likely to believe the medication was effective. As
the authors argued, although the bar graph does not contain any new information,
the visual can “signal a scientific basis for claims” that lead people to believe
the message is scientifically legitimate and credible [Tal and Wansink, 2016, p.
7].


   Similarly, other graphs commonly used to show descriptive statistics, such as line or
area graphs, may also appear “scientific” and create a pseudo sense of trustworthiness
among viewers. However, when viewing nontraditional forms of visualizations, such as
proportional area graphs (also known as “bubble graphs”), people might be
suspicious as they lack the scientific feel embedded in classic graphs. Our first
hypothesis (H) addresses the relationship between visual format and perceived data
credibility:


H1a:
   perceived credibility of visualized data is higher when data is presented in a
traditional graph (e.g., area graph) than when it is presented in an innovative graph (e.g.,
proportional area graph).



   

2.2     Interactivity

Additionally, as digital technologies mature and further integrate with the Web, it becomes
possible to include various levels of interactivity in information visualization. Prominent news
organizations, including The New York Times, Washington Post, and Guardian, regularly incorporate


interactive data visualizations into their news stories. By employing animation techniques, such as
zooming, filtering, linking, and drill-down operations, users can freely explore visualized data and
find the exact data value of interest [Segel and Heer, 2010]. These techniques also support tasks
such as data diagnostics, pattern discovery, and hypothesis formation [Hegarty, 2011]. In addition,
interactive visualizations can encourage author-reader interaction by inviting readers to freely
explore specific data or details within a larger framework set up by the author [Segel and Heer, 2010].


   Nonetheless, empirical evidence on the actual effectiveness of interactive
visualizations is mixed. While some suggested that interactive graphics are superior to
static ones, especially for situations where people are asked to track moving objects within
a display or to follow data trends over time [Heer and Robertson, 2007], others argued this
might not be true if the interactions were too complex [Tversky, Morrison and
Betrancourt, 2002]. Recent research suggested that interactive visualizations only augment
comprehension when they allow users to (a) offload internal mental computations onto
external manipulations of the display itself; and (b) filter out task-irrelevant information
[Hegarty, 2011].


   With respect to the potential relationship between visual interactivity and
perceived data credibility, people may perceive the data to be more credible when
viewing an interactive display because of the precision and autonomy it affords.
Interactive visualizations usually offer a greater level of precision than static ones. For
example, an individual may conclude that the population of a region lies between
40,000 and 50,000 based on her quick reading of a static map; with an interactive
display, the same individual can easily figure out that the exact population of the
region is 42,317 [Maciejewski, 2011]. Since humans often misinterpret precision as
accuracy, people viewing an interactive graph that shows precise numbers may
perceive it to be accurate and hence attach more credibility to it [Wang and Strong,
1996].


   In addition, since interactive displays encourage people to explore the data and
make sense of it by themselves, therefore empowering them, this type of visual
displays may increase the perception of credibility. Previous research suggested
that when people are prompted to achieve an autonomous understanding of
mediated information, they tend to assign more importance and credibility to it [Hall
Jamieson and Hardy, 2014; Sillence et al., 2007]. We therefore propose the following
hypothesis:


H1b:
   perceived credibility of visualized data is higher when the data is presented in an
interactive graph than when it is presented in a static graph.



   

2.3     Source attribution and trust



As with any type of mediated information, people can rely on peripheral cues, such
as source attribution, to judge the credibility of visualized data. Atkinson and Rosenthal
[2014], for instance, presented participants with eco-labels certified by either the United
States Department of Agriculture (USDA), or the product manufacturer. Results showed that
consumers found the USDA label more trustworthy than the corporate label, and developed
more favorable attitude toward the USDA-labeled product. Similarly, participants were
more inclined to believe a science story from an .edu site (indicating a website from a higher
education institution), than a .gov site (indicating a government website) [Treise et al., 2003].


   Indeed, human beings are cognitive misers, or at least satisfiers, who collect only as
much information about a topic as they think is necessary to reach a decision [Popkin,
1991]. Therefore, when facing a situation in which they do not have enough information to
judge the credibility of a dataset, people will make an informed guess based on their
confidence in the source. Particularly for scientific topics that are remote from everyday
experience and characterized by highly technical discourse, people are likely to engage in
heuristic processing and rely on endorsement from experts to make judgments
[Brossard and Nisbet, 2007]. Previous research found that the American public has
different levels of trust in social institutions (e.g., university scientists, federal
agencies, and regulators) regarding the development of risky technologies. Generally,
university scientists are rated more favorably than federal agencies as sources of
risk-related information [e.g. Whitfield et al., 2009]. Therefore, we hypothesize
that the perceived credibility of visualized data will vary as a function of source
attribution:


H2a:
   perceived credibility of visualized data varies as a function of source attribution.


   However, this hypothesized relationship between source attribution and data
credibility might be conditional on an individual’s trust in the source. For example, those
who assign equal levels of trust to university scientists and governmental agencies might
then ascribe similar levels of confidence in evidence attributed to each of them, rather than
rating university scientists higher. In fact, heuristic cues (or “mental shortcuts”) work most
effectively when they resonate with long-term schemas held by audiences [see Scheufele
and Iyengar, 2013, for a review]. However, this sensitivity to source manipulation
applies only when the embedded heuristic (i.e., source attribution) is relevant
to individuals’ underlying schema. For example, if university scientists were
perceived more trustworthy than governmental agencies, people might think
information from the former party is more credible than from the latter. It is
also possible for those who favor governmental agencies to perceive their data
as more credible than that from university scientists. A hypothesis is therefore
proposed:


H2b:


   the relationship between perceived credibility of visualized data and source attribution
varies for people with different levels of trust in the given sources.



   

2.4     Self-assessed design quality

In addition to extrinsic factors, such as design characteristics and source attribution,
visualized evidence evaluations may also be influenced by perceived design quality.
Design quality, in our case, refers to individuals’ subjective evaluations of whether the
information is presented in a visually clear and concise manner based on design elements
(e.g., color, font, layout etc.). During an initial scan by an individual, visualizations are
usually viewed as one holistic message. Champlin et al. [2014] argue that visual media “is
first viewed as a whole before drilling down to interpret the content word by word or
through specific visual graphics” (p. 285). After the initial holistic interpretation,
judgments and impressions about visual messages often focus on clarity and complexity
[Champlin et al., 2014].


   Information clarity, or the extent to which the information can be easily understood, is
frequently mentioned by Internet users when asked to evaluate a site’s credibility
[Sillence et al., 2007]. Additionally, the presence of a “moderately complex” layout,
which can be achieved by a deliberate balance of information and graphic design
elements, suggests greater design quality for a visual message [Geissler, Zinkhan and
Watson, 2006]. Research showed that health advertisements of a mid-level design
complexity consistently received more positive evaluations (e.g., like it more,
easier to understand, and includes more information about health) than either
more or less complex advertisements [Champlin et al., 2014]. Also, digitalized
health messages with higher design quality led viewers to perceive the content
to be more informative [Lazard and Mackert, 2014]. A hypothesis is therefore
proposed:


H3:
   perception of credibility for visualized data positively relates to viewers’ subjective
evaluation of the graph’s design quality.



   

2.5     Comprehension

Another factor that might influence perception of credibility is the extent to which viewers


could comprehend the visualized content. While comprehension can mean various things
in different contexts, we focus on translating and interpreting visualized evidence [Shah,
Mayer and Hegarty, 1999]. Translation means to describe the visualized content and to
identify specific value of interest. Interpretation, in contrast, means to look for relationships
among variables and to sort out important factors [Shah, Mayer and Hegarty,
1999].


   So far, research examining the relationship between comprehension and perceived
credibility of visualized data found conflicting results. One study showed that giving
audiences information through visuals with the intent of enhancing understanding of the
shown data can help increase perceived credibility of science [Hall Jamieson
and Hardy, 2014]. Yet, another study found that stories including a graphic are
rated as less trustworthy than the same story without it, despite improvement in
understanding the conveyed numerical information associated with the graphic [Johnson
and Slovic, 1995]. Given these mixing findings, we propose a research question
(RQ) regarding the relationship between comprehension and perceived data
credibility:


RQ1:
   what is the relationship between viewers’ perceived credibility of visualized data and
their comprehension?



   

2.6     Predispositions

Predispositions, including graph efficacy, numeracy skills, and domain knowledge, may
potentially influence perception of credibility given their intrinsic relationships with
comprehension. Cognitive psychologists have long contended that comprehension hinges
on graph efficacy, which refers to people’s perceived capabilities to comprehend
graphically represented information [Galesic and Garcia-Retamero, 2011]. More than just
an assessment of task-specific abilities, graph efficacy predicts how well people can
understand a given standard graph [Garcia-Retamero and Galesic, 2010]. In a similar vein,
numeracy skills, a measure of the ability and disposition to make use of quantitative
information, also influences comprehension in visual contexts [Fagerlin et al., 2007;
Garcia-Retamero and Galesic, 2010]. Research shows that people with low graph efficacy
often have low numeracy skills ratings. Predictably, graphic tools help low-numeracy
people with relatively high graph literacy to understand the results of a randomized
experiment, but do not help those with low graph literacy [Garcia-Retamero and Galesic,
2010]. Additionally, knowledge about a specific topic of interest, which helps people direct
their attention to task-relevant information while ignoring irrelevant information in a
visual display, shapes understandings of the displayed content [Hegarty, Canham and
Fabrikant, 2010]. To factor out the potential implications of these dispositional factors
on the perception of credibility, we included a self-reported measure of graph


efficacy, numeracy skills and domain knowledge as independent variables in the
model.



   

3     Methods


   

3.1     Participants

We recruited participants from a number of courses at a large Midwestern university
in May 2014 and asked them to complete a computer-assisted experiment at
one of the two designated locations on campus. Notably, the state where the
university locates had only one operating nuclear power plant in 2014, producing
14% of the state’s electricity [Public Service Commission of Wisconsin, 2013]. In
fact, the state Assembly passed a bill in 2016 lifting a restriction on new nuclear
power plant, which would “place nuclear power ahead of natural gas, oil and coal
on the state’s prioritized list of energy sources” [Beck and DeFour, 2016, para.
2].


   Upon survey completion, participants received extra course credit as
compensation and were given a short debrief after participation. In total, 517
valid responses were collected. Participants majored in a wide variety of fields,
ranging from natural sciences or engineering (28.7%) to humanities (31.9%) and
social sciences (32.9%). Most participants (98.1%) were between 18 to 24 years old
(M=20.3,
SD=5.3).
Sixty-four percent of participants were female. Noticeably, ninety-five percent of
participants had taken at least one, while 17.4% had taken more than five, college-level
courses in the field of science or engineering. As participants who had more formal
education in scientific fields might be more familiar with data visualization and its
conventions, we included the number of science courses as a control variable to factor out
potential confounding effects.



   

3.2     Procedure

During the experiment, participants were first asked about their knowledge of
and attitudes toward the nuclear fuel cycle development, as well as trust


in various social institutions. Then they were randomly assigned to one of
eight conditions. Each condition included viewing a long-term projection
of the performance of three different nuclear fuel cycles between 2000 and
2100.1
Each comparison focused on either (a) the projected volume of waste streams produced by
each fuel cycle or (b) the cost projections for waste disposal. Researchers specializing in
nuclear engineering provided the simulated data and collaborated in designing the
stimuli.


   Individuals participated in the experiment in a lab setting and did not have access to external
sources of information. While viewing a specific graph, participants were asked to retrieve numerical
values and to answer questions about the characteristics and performance of different fuel cycle
options. After finishing the tasks, participants reported how credible the shown data was, evaluated
the design quality, and answered questions measuring numeracy skills and assessing demographics.



   

3.3     Conditions

The experimental stimuli followed a between subjects 2 (traditional area chart vs. innovative proportional
area chart) ×2 (static
vs. dynamic) ×2
(university scientist vs. governmental agency) design. Within each of the conditions, three separate charts
representing information for three different fuel cycle options were juxtaposed. Each stimulus included a
brief introduction about either the costs or the radioactive waste associated with the nuclear fuel cycle in
question. Additional information was provided about each specific type of cost/waste shown in the stimuli.


Graph format.
   In the traditional area chart conditions, data were plotted in an x-y plane, with the filled
area representing the distribution of cost projections/waste volume (y-axis) across the
time period (x-axis) (see Figure 1). In contrast, each proportional area chart (also known as a
bubble chart) included a hierarchical array of circles representing various types of cost
projections/waste volume associated with each fuel cycle, the size of which was
proportional to the data value (see Figure 2). This graph type was adapted from real data
visualizations showing similar information on carbon emissions and budget proposal
[Lavelle, 2013; Shan, 2012]. Other visual characteristics, including color themes, font type
and size, and layout, were held constant across conditions to rule out any potential
confounding impacts.
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Figure 1: Dynamic area chart showing the costs of waste storage and disposal for
three nuclear fuel cycles between 2000 and 2010.
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Figure 2: Dynamic proportional area chart showing the costs of waste storage and
disposal for three nuclear fuel cycles between 2000 and 2100.



   





Interactivity.
   To manipulate the degree of interactivity, we created dynamic and static versions for
both types of graphs. While the static and dynamic area charts contained the same
information, participants could retrieve the exact data value only when viewing the
dynamic graph. Specifically, for the dynamic area chart, participants could hover their
cursors over the plot area to display a pop-up square containing the y-coordinate value
(i.e., cost or waste volume) for each x-coordinate (i.e., year) (see Figure 1). When viewing a
dynamic bubble chart, participants could adjust an animated slider controlling the
timeframe and view data for a specific year (see Figure 2). Differing from traditional area
charts, bubble charts represented data for one year at a time rather than showing the
overall distribution in a single graphic. For this reason, as it was not possible to represent
all of the data in a single static bubble chart (analogous to the complete data displayed in
the static traditional area chart), it only contained minimal information (i.e., data for
2000, 2050, and 2100) that allowed participants to answer the comprehension
questions.


Data source.
   Additionally, a data source manipulation was included to prompt participants to
ascribe the shown data to different institutions. In the stimuli, we included a logo from
either the Massachusetts Institute of Technology (MIT) to represent a university source or
the U.S. Department of Energy (DOE) as a governmental source, both institutions likely to be
sources for energy related data.



   

3.4     Measures

Dependent variable.
   Perceived data credibility was measured using a five-point scale (1 = strongly
disagree, 3 = neither agree nor disagree, 5 = strongly agree), asking participants the
following statements, “the data are trustworthy,” “the data are produced by a
reputable source,” “the data are accurate,” “the data are error-free,” “the data are
incorrect” (reverse coded), “the data are unbiased,” and “the data are objective.”
We averaged the six items to create an index with scores ranging from 1 to 5
(M=3.33, SD=.43,
Cronbach’s alpha=.72).


Independent variables.
   Comprehension was measured by six multiple-choice questions. Three questions asked
participants to identify specific data points, such as “(What was the cost of wet storage
and dry storage/How much wet storage and dry storage generated) for the Nuclear Fuel
Cycle 1 in 2000?” The other three questions asked participants to interpret the graph by
comparing data points, such as “Among the three nuclear fuel cycles, which one
(costs most/generates the most total waste) in 2000?” and “On average, which
nuclear fuel cycle costs most over time? Nuclear Fuel Cycle 1, 2, or 3.” An index
(range 0–6) was created based on the cumulative number of correct answers
(M=.77,
SD=1.46,
Kuder-Richardson Formula 20=.622).


   Self-assessed design quality was measured by seven items using a five-point scale (1 =
strongly disagree, 3 = neither agree nor disagree, 5 = strongly agree), asking participants if
they think the graph “is interpretable,” “shows a clear picture of the data,” “is easy to
understand,” “is readable,” “represents the data well,” “is concise,” and “organizes
the data well.” We averaged these items to form an index, ranging from 1 to 5
(M=3.82,
SD=.71,
Cronbach’s alpha=.91).


   Relative trust in university scientists versus governmental agencies was operationalized as
the difference in scores between individuals’ trust in university scientists and that in
governmental agencies. Participants were asked to indicate their trust in different institutions
“to tell the truth about the risks and benefits associated with the nuclear fuel cycle” on a
five-point scale (1 = do not trust their information at all, 5 = trust their information very
much). A difference score was calculated for each individual by subtracting trust in “federal
agencies, such as the U.S Department of Energy” from that in “university scientists”
(M=.36,
SD=.96). A
breakdown shows that 20.9% of the subjects trusted federal agencies more than university
scientists, 24.4% saw them as equally trustworthy, and 54.7% expressed more trust in
university scientists.


   Self-reported graph efficacy was measured based on a modified version of a
computer efficacy measure (i.e., individuals’ beliefs about their abilities to
competently use computers) [Compeau and Higgins, 1995]. Four items were
asked on a five-point scale (1 = strongly disagree, 3 = neither agree nor disagree, 5
= strongly agree), including “I believe I have the ability to (understand data
points in a graph/identify trends shown in a graph/make appropriate decisions
based on a graph)” and “I could understand a graph even if there was no one
around telling me what to do.” These items were averaged to create an index
(M=3.79,
SD=.70,
Cronbach’s alpha=.84).


   Subjective numeracy skills was adapted from Fagerlin et al. [2007]’s subjective numeracy
scale. Three questions asked participants to indicate their agreement with the following
statements: “I am good at (working with fractions/working with percentages/calculating
a 15% tip)” (1 = strongly disagree, 3 = neither agree nor disagree, 5 = strongly agree); one
question asked “when people tell you the chance of something happening, do you
prefer that they use words or number” (1 = prefer words, 5 = prefer numbers;
and one asked “when you hear a weather forecast, do you prefer predictions
using percentages or predictions using only words?” (1 = prefer percentages, 5 =
prefer words; reverse coded). An index was created based on the average score
(M=3.58,
SD=.72,
Cronbach’s alpha=.69).


   Self-reported domain knowledge was measured using a five-point scale (1 = very unfamiliar, 3
= neither familiar nor unfamiliar, 5 = very familiar) asking participants how familiar they
felt they were with “nuclear energy production,” “health implications of nuclear energy,”
“environmental implications of nuclear energy,” “nuclear waste management,” and
“economics of nuclear power-related facilities.” We averaged these items to form an index
(M=2.6,
SD=1.02,
Cronbach’s alpha=.90).


   In addition, age, gender, the field of one’s academic major (0 = social
sciences/humanities/business/medical sciences, 1 = engineering/natural sciences), and the number
of science courses (M=5.02, SD=3.72) taken in
college were added as control variables to avoid any potentially confounding effect on the outcome.



   

3.5     Analytical framework

We analyzed the data using hierarchical Ordinary Least Square (OLS) regression model.
Independent variables were entered in blocks to determine their relative explanatory
power. The first block included three dichotomous variables representing each
experimental treatment (i.e., graph format, interactivity, and source attribution). A number
of control variables, including age, gender, major field, and the number of science
courses were added in Block 2. Block 3 contained predispositions whereas Block 4
included graph comprehension and perceived design quality. To examine the
hypothesized interactive effect of source attribution and relative trust on perceived data
credibility, we created an interaction term by multiplying source attribution and
the standardized score of relative trust (Block 5). This was done to help prevent
multicollinearity between the interaction term and its component parts [Cohen and
Cohen, 1975].





   

4     Results

Overall, the model explained 14.9% of the variation in perceived data credibility (see Table
1). Age was negatively related to perceived credibility of the visualized data
(β=−.14,
p<.001),
indicating that younger participants were more likely to think the presented data are
credible than older ones.
   




   






 Table 1: OLS regression model predicting data credibility.
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   H1a and H1b addressed the potential influences of graph format and graph
interactivity on perceived data credibility. H1a was not supported, as viewers’
perceived credibility did not vary when they were shown different graph formats.
While interactivity was related to the dependent variable at a significant level
(β=−.09,
p=.046), the
relationship was negative and indicated that people were less likely to think the
data was credible when viewing a dynamic graph than when viewing a static
one, which contradicted what we proposed. Therefore, we failed to approve
H1b.


   Nonetheless, consistent with H2a, source attribution influenced how people
assessed data credibility. In particular, people who viewed data attributed to MIT
perceive significantly higher credibility than those viewing data attributed to DOE
(β=−.14,
p=.001). In
addition, H2b, which proposed differentiating effects of source attribution on people with
varying levels of trust in data sources, also received substantial support. Results showed
that people who trusted university scientist more than governmental agency were more
likely to think the data was credible when it was attributed to MIT than to DOE. For those
who assigned equal amount of trust to both parties or who trusted governmental agencies
more, their perceived data credibility does not differ across treatment conditions (see
Figure 3).


   










[image: PIC]

 

Figure 3: Interactive effect of relative trust and source attribution on perceived data
credibility.



   





   H3 proposed that perceived data credibility is positively related to self-assessment of
graph quality, which was supported by a significant positive relationship between the two
variables (β=.16,
p=.001). However,
graph comprehension, which measures the accuracy of viewers’ understanding of the stimuli,
did not significantly relate to perceived credibility. Lastly, graph efficacy, which measured
self-reported ability to read and use graphical tools, was positively related to the outcome
variable (β=.10,
p=.037).
   

5     Discussion

Science communicators and scholars have expressed increasing interests in leveraging
visual techniques to represent complex databased information about scientific issues, such
as climate change and risky technologies. However, despite the growth of such interventions
in various contexts, including journalistic reporting [Dixon et al., 2015], classroom teaching
[Teoh and Neo, 2007], and user-centered design [Rodríguez Estrada and Davis, 2015],
little is known about how people judge the accuracy and trustworthiness of information
based on display characteristics and individual predispositions. Drawing from theories
developed in various fields such as visual cognition, human-computer interaction, marketing,
and science communication, we propose a conceptual framework that captures some
of the cognitive process underlying perceptions of credibility of displayed scientific data.


   Before discussing our findings in detail, we should note a number of methodological
considerations. First, we used only one issue (i.e., nuclear fuel cycles) to test the
proposed framework, which could potentially limit the generalizability of our
findings. Future researchers would need to replicate this study using a variety
of other issues to verify the validity of the proposed framework. In particular,
individuals’ preexisting attitudes toward the issue might interfere with how
they interpret the shown data. Further research needs to examine how people’s
preexisting attitudes might play a role in shaping their processing of visualized
data.


   Contrary to what we expected, visual format and interactivity were not related to the
perception of data credibility. Although we carefully chose these two types of displays
(i.e., area graph and proportional area graph) based on their popularity and comparability,
they might not differ drastically in how “scientific” they look to our participants, who
were a group of college students majoring in both science and non-science fields.
Especially given students’ low familiarity with the nuclear fuel cycle, they might lack an
intuitive sense of how this type of data was typically presented and hence viewed the two
given displays as equivalently legitimate and acceptable. In addition, while the results
suggested that perceived credibility of visualized data varies as a function of source
attribution, such relationship might manifest differently for different populations. For
example, although student participants found the MIT-sourced data more credible than
the DOE-sourced one, the opposite might be true for people working in the nuclear
industry.




   Second, we manipulated interactivity along two dimensions, including animation and
precision. Compared with static displays, interactive visualizations allow users to
filter out task-irrelevant information while obtaining numerical information in
greater precision. However, these are not the only ways in which interactivity can
function in real visualization design. The effects of other interactive features, such as
animated slideshows and drill-down stories, should be studied in future research.
Noticeably, the proposed framework only explained 15% variation in the dependent
variable; researchers might want to incorporate additional factors, such as issue
involvement and perceived persuasive intent, in future to develop a more robust
model.


   With these limitations in mind, our study generated important, two-fold findings. First,
individuals with limited knowledge about a scientific issue, such as the nuclear fuel cycle, tend
to rely on heuristic cues, such as design quality and source attribution, to judge the credibility
of visualized data. Researchers have long contended that design quality serves as a heuristic
cue for the viewer to assess the quality and trustworthiness of the information displayed
[Champlin et al., 2014; Sillence et al., 2007]. This study demonstrates that, independently of
the actual visual format in which data is represented, people ascribe more credibility to data
shown in a display judged to provide a clearer and more concise picture of the data. It should be
noted that our conceptualization of design quality refers to individuals’ subjective evaluations
of design quality, not the actual presence and presentation of design elements, such as color,
font, object size and layout [Champlin et al., 2014]. While our manipulation of graph format
reflects, to some extent, a different representation of such elements, its effect on the perception
of data credibility is minimal. Further research is required to understand the differentiating
impact of objective and perceived design quality on the perception of data credibility.


   Interestingly, even though it was presented in a form that was peripheral to
the central message (i.e., through organizational logos), the source of the data
was noticeable to participants. About one quarter of the respondents accurately
identified the source of visualized data when it was presented as organizational
logos. People responded to source cues differently based on their deeply held
attitudes. When certain cues (i.e., logo of a prestigious university) resonated with
individuals’ preexisting beliefs (i.e., university scientists are more trustworthy than
governmental agencies as information sources), they assigned more credibility
to data attributed to their preferred source, even though the content was the
same.


   Data professionals and designers have previously highlighted the importance of
labeling data sources to assure audiences of the credibility and integrity of graphical
displays [e.g., Tufte, 1992]. Our study extends this observation by showing that using an
iconic label to display the source of data not only cues people about the credibility of
graphical displays as a persuasive device, but also influences how they judge the
credibility of the shown information.


   Noticeably, while recent voices proposed leveraging the credibility of scientists
through visualizing techniques that invite audiences to comprehend the evidence with
autonomy [Hall Jamieson and Hardy, 2014], the link between comprehension and the
perception of data credibility did not receive sufficient support from this study.
Therefore, we did not find whether perceived credibility of visualized data would be
positively relating to viewers’ comprehension of the same data. In other words,
we were not able to approve if a legitimate interpretation of the shown data


would lead people to think the data is true or perceive it to be highly credible. In
fact, the positive relationship between comprehension and perceived credibility
became non-significant only after we entered self-assessed design quality in the
equation. Arguably, an intuitive judgement of whether the data is accessible
and digestible in its current form plays a more important role in determining
viewers’ perception of data credibility than whether they actually understand
it.


   As an emerging genre of popular discourse, information visualization has been
increasingly used to convey scientific data. While some tentative evidences had showed
the potential power of visual communication in engaging audiences while diminishing
identity-protective cognition, we lacked a thorough understanding of the underlying
mechanism and therefore ran short of advices for science communication practices. This
study took an initial step in identifying some of the design factors that might come into
play and constructing an encompassing framework that accounts the roles of values and
predispositions.


   For scientists, data professionals and designers, the major task is not only to meet the
aesthetic and efficiency goals when creating visualizations, but also to understand the
audiences’ background and cognitive needs. For example, to make an information
visualization appear credible to target audiences, one might want to investigate the source
deemed most trustworthy by target audience and incorporate it into the visual narratives.
In addition, although modern technologies equip communicators to present
data in vivid, innovative, and dynamic formats, they need to assure that such
visuals do not distract or confuse viewers; otherwise, it can be useless or perceived
untrustworthy.
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