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Abstract

Maintaining long-term participation in citizen science projects is challenging; thus, it is
important for project developers to use effective techniques to motivate participants.
One approach is to incorporate anthropomorphism (ascribing humanlike qualities to a
non-human agent) when designing and deploying technology. In a quasi-experimental study
conducted as part of the Citizen-Enabled Aerosol Measurements for Satellites (CEAMS)
citizen science project, we investigated the relationship between anthropomorphism and
motivation to participate in citizen science. Findings showed partial support for the
relationship between anthropomorphism and motivation.
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1 Introduction

Citizen science has been increasingly practiced as an effective way to collect large data sets
while engaging the public with the scientific process [Cappa et al., 2018; Palacin et al., 2021].
While most studies employing a citizen science approach have focused on natural science
phenomena [Campos et al., 2021; Kullenberg & Kasperowski, 2016], recent work has
investigated more participant-based outcomes such as engagement, motivation to
participate, and retention [e.g., Pateman et al., 2021; Robinson et al., 2021; Wright et al.,
2015]. Such work is vital to the success of citizen science projects, which rely on volunteers
[Levontin et al., 2022; Cappa et al., 2018]. Long-term participation is challenging in citizen
science projects [Frensley et al., 2017], so efforts to study participant motivation from
recruitment to retention are beneficial for future projects.

The use of technologies and digital platforms in citizen science projects [e.g., Jennett & Cox,
2018; Kullenberg & Kasperowski, 2016] provides an opportunity to draw upon the
human-robot interaction (HRI) literature to study participant motivation. HRI is a
multidisciplinary field that examines the social interactions between humans and robots
[Bartneck et al., 2020]. In the HRI domain, psychologists have created models to describe
what occurs when people anthropomorphize nonhuman agents, such as technology. The
cognitive and emotional drivers people have when anthropomorphizing are similar to key
motivations for participating in citizen science projects. In this study, we conduct initial tests
of a theoretical framework that connects the Sociality, Effectance, and Elicited Agent
Knowledge (SEEK) model of anthropomorphism [Epley et al., 2007] to three common
motivations volunteers cite for participating in citizen science projects: building community,
perceived competence, and contributing to scientific knowledge [Curtis, 2018; Frensley et al.,
2017; Raddick et al., 2010; Tiago et al., 2017]. We investigate the relationship between
participants’ anthropomorphic behavior toward a backyard air-quality sampler and their
motivations to contribute to a longer-term citizen science project.

2 Literature overview

2.1 Motivation to participate in citizen science

For citizen science projects to succeed, they must attract and retain volunteers [Levontin
et al., 2022]. A better understanding of the factors that motivate people to participate in
these efforts would aid scientists in designing projects that are more likely to promote
successful data collection over longer periods [Frensley et al., 2017]. This understanding is
especially important for digital citizen science projects, which can have difficulty sustaining
participation over time [Jennett & Cox, 2018; Laut et al., 2017]. For example, Fold-It is a
digital citizen science game in which participants help scientists discern the structure of
proteins. Launched in 2008, Fold-It has thousands of registered participants, while the
number of active participants is much smaller, ranging between 200 and 300 [Curtis, 2015].

Drawing on the work of Humphreys and Revelle [1984], and Robinson et al. [2021], for this
study, motivation is defined as the drive to satisfy a need. It is a “primary determinant of
performance” [Humphreys & Revelle, 1984]. People can have multiple motivations for
participating in an activity, and these motivations are often classified as intrinsic (driven by
internal rewards such as enjoyment, curiosity, feelings of belonging) or extrinsic (driven by
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external rewards such as recognition). This study focuses on intrinsic motivations, though
previous work has looked at how encouraging external rewards like credit in publications and
announcements can be for participant motivation [Alender, 2016].

Several theories have been used to understand people’s motivations, including
self-determination theory [Deci & Ryan, 1985; Ryan & Deci, 2000]. This theory identifies
three psychological needs essential for a person’s motivation and psychological well-being:
autonomy (feeling personal agency over one’s experiences and actions), competence (feeling
able to complete a task), and relatedness (feeling connected to others) [Ryan & Deci, 2017].
Three motivations often identified in studies of participants in citizen science projects
— building community, perceived competence, and contributing to scientific knowledge — can
be mapped onto self-determination theory’s three needs for motivation. Research indicates
that these needs are important intrinsic motivations for citizen science participants, which
can influence long-term motivation and engagement in a project [Curtis, 2018; Frensley et al.,
2017; Raddick et al., 2010; Tiago et al., 2017]. The following sections outline each motivation,
using examples from long-term digital and technological citizen science projects.

Building community. According to self-determination theory, a person’s desire for
relatedness will motivate them to seek opportunities to bond with others. This desire for
community has been categorized as an intrinsic motivation, i.e., one that comes from
seeking personal fulfillment [Curtis, 2018; Eveleigh et al., 2014; Tiago et al., 2017]. Building
community fulfills the social needs of participants, which benefits the participants as well as
the overall project goals in citizen science [Curtis, 2018].

While online communities for citizen science projects are generally formed as a
communication management strategy between scientists and participants, they can also
foster community building among participants [Curtis, 2018; Mankowski et al., 2011]. The
Galaxy Zoo project was among the first to determine that building community increases
long-term participation in citizen science projects. Galaxy Zoo has volunteers classify
images of galaxies from the Sloan Digital Sky Survey using two online interfaces [Raddick
et al., 2010]. Forming a sense of community from the project was among participants’ top
most cited motivations [Raddick et al., 2010, 2013].

Perceived competence. Perceived competence is the extent to which a person feels able
to understand and perform the tasks a challenge presents [Tiago et al., 2017]. It is an
intrinsic motivation under self-determination theory, and previous psychological studies have
shown that people have an inherent need for competence [Deci & Ryan, 1985; White, 1959].
Like a flow state, people experience a sense of enjoyment from feeling that they have the
skill to meet a challenge and a sense of control over themselves in that task
[Csikszentmihalyi, 1990]. Therefore, citizen science projects should be designed to bolster
people’s perceived competence, positively affecting their intrinsic motivation to participate.

Some studies have found that the complexity of participation deters citizen contributions
[Eveleigh et al., 2014]. If the technology citizen scientists must use to participate is
challenging to master, participants tend to drop out of studies [Eveleigh et al., 2014; Frensley
et al., 2017]. For example, Tiago et al. [2017] studied intrinsic motivations in citizen science
participation in BioDiversity4All, a Portuguese citizen science project where users identify
species by taking online fieldnotes and tagging pictures. Perceived competence was
positively associated with participation and negatively associated with participant drop-off
[Tiago et al., 2017].
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Contributing to scientific knowledge. A person’s desire to contribute to scientific
knowledge is connected to their autonomy, a key psychological need under
self-determination theory. When a person volunteers for a citizen science project, they are
exerting agency over their actions, which increases their autonomy. Their participation can
then lead to increased happiness and empowerment [Mankowski et al., 2011] and feelings of
accomplishment when they make discoveries or are part of research that gets published
[Curtis, 2018; Frensley et al., 2017; Tiago et al., 2017].

This sense of fulfillment in contributing to the larger body of scientific knowledge has been
seen in multiple citizen science projects [e.g., Alender, 2016; Mankowski et al., 2011; Raddick
et al., 2013; Tiago et al., 2017]. For example, in a survey of 271 volunteers from eight water
quality monitoring organizations in the United States, Alender [2016] found that contributing
to scientific knowledge was a key motivator for participation. Participants reported feeling
valued when data was shared with them and encouraged when the data was used in a
community presentation or a scientific publication [Alender, 2016].

2.2 Anthropomorphism

Anthropomorphism describes the assigning of human characteristics to real or imagined
nonhuman objects [Connell, 2013; Epley, Waytz et al., 2008]. Attributions can range from
physical traits, such as perceiving a smile on an animal’s face, to emotional states, such as
crediting a computer as being angry when it is not working as expected [Epley et al., 2007;
Epley, Waytz et al., 2008]. This phenomenon has been studied in many areas including
consumer behavior in marketing [Connell, 2013; MacInnis & Folkes, 2017], the psychology
behind religion [Epley, Akalis et al., 2008], and in human-robotic interaction (HRI) [Epley
et al., 2007; de Kleijn et al., 2019]. In the HRI domain, researchers have used Epley et al.’s
[2007] three-factor model — the sociality, effectance, and elicited agent knowledge (SEEK)
model — to explain why people anthropomorphize nonhuman agents, such as unfamiliar
technology. The SEEK model is based on research in social cognition [Epley, Waytz et al.,
2008]. Its three factors are described in the following paragraphs.

Sociality. People may anthropomorphize nonhuman objects to fulfill a need for social
connection [Epley et al., 2007]. Loneliness is uncomfortable; thus, people may try to alleviate
it by anthropomorphizing objects [Bartz et al., 2016; Gardner et al., 2005]. Several studies
have investigated the relationship between sociality and nonhuman agents [e.g., Waytz,
Epley & Cacioppo, 2010; Waytz, Morewedge et al., 2010; Blut et al., 2021; Christoforakos &
Diefenbach, 2023]. For example, Epley, Akalis et al. [2008] had participants read descriptions
of technological gadgets, such as Clocky (a wheeled alarm clock that “runs” from the
user when it goes off). The researchers found that loneliness was positively correlated with
beliefs in gadgets’ human-like characteristics. In 2016, Bartz et al. replicated the findings of
Epley, Akalis et al. [2008] using a much larger sample, and they further found that reminding
participants of a close, supportive relationship reduced their anthropomorphic tendencies.

Effectance. According to the SEEK model, people are motivated to anthropomorphize
non-human objects they do not understand [Wiese et al., 2017]. Termed “effectance”, this
motivation encourages people to anthropomorphize to reduce uncertainty and help cope
with the unknown [Epley et al., 2007]. For example, people have anthropomorphized severe
weather when they do not understand why a storm is destructive [Epley et al., 2007; Waytz,
Cacioppo & Epley, 2010]. Effectance has also been experimentally tested in HRI studies. For
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example, Eyssel et al. [2011] hypothesized that participants’ acceptance of Flobi, an
anthropomorphized robot head with facial features that move to express different emotions,
would be higher when they anticipated interacting with the robot and the robot’s behavior
was predictable than when they did not expect to interact with the robot. Results indicated
that participants who anticipated that they would need to interact with Flobi
anthropomorphized more than those who did not [Eyssel et al., 2011].

Elicited agent knowledge. People understand non-human agents, such as animals and
objects, by humanizing what they perceive the others’ realities to be [Epley et al., 2007]. This
result occurs because most interactions people have are with other humans [Epley et al.,
2007]. Thus, when people lack knowledge of a nonhuman agent, such as an unfamiliar
animal, they initially process that agent’s behaviors in light of their own experiences, i.e., in
anthropomorphic terms, because it is easier to do so [Epley et al., 2007]. The need for an
easy way to explain nonhuman behavior is also seen in robotics. For example, after observing
a robot that was gesturing using unfamiliar movements, people were motivated to
anthropomorphize the robot’s features to explain its behaviors [Higgins, 1996]. A perceived
similarity between people and a robot drives people to anthropomorphize further [Epley et al.,
2007]. Having human-like physical characteristics, like eyes and a mouth, help to make a
robot more familiar [DiSalvo et al., 2002].

2.3 Role of anthropomorphism in motivating citizen science participation

This study addresses the challenge of maintaining participation in longer-term citizen
science projects by testing relationships between anthropomorphism and motivation to
participate. To our knowledge, anthropomorphism has not been tested with factors like
participant motivation in citizen science. The proposed relationships are based on the SEEK
model of anthropomorphism [Epley et al., 2007] and key elements of motivation according to
self-determination theory [Deci & Ryan, 1985; Ryan & Deci, 2000]. As Figure 1 shows,
anthropomorphizing nonhuman agents to meet sociality needs can be paired with desire to
build community, as people seek interaction and form relationships in both. Likewise,
effectance and perceived competence explain why people feel a need to operate effectively
within their environments [Deci & Ryan, 1985; White, 1959]. Lastly, elicited agent knowledge
and the motivation to contribute to scientific knowledge both describe people’s motivations
for understanding how things work.

Figure 1. Conceptual model showing connections between the SEEK model of anthropomorphism
and motivation to participate in citizen science.
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2.4 Encouraging anthropomorphic responses in human-robot interactions

In HRI, anthropomorphism can be encouraged through design. Humanlike movement in
robots without human-like physical features has been shown to activate mirror neuron
responses in research participants [Gazzola et al., 2007]. For example, programming social
movements like stretching or lifting to happen when a person turns on a robotic instrument
could simulate “waking up”, activating a person’s cognitive familiarity between the machine
and the human. Physical characteristics, like movement or structure, are some of the
greatest drivers of anthropomorphism with technology [Darling, 2015; DiSalvo et al., 2002].

Language is another social element that can stimulate a human-robot interaction. Using
anthropomorphic language to describe robots (e.g., giving them a name or a backstory)
affects people’s perceptions of and interactions with them. Through interviews with people
who interacted with robots as part of their work, Darling [2015] found that
anthropomorphically portraying the robot, such as calling it a companion or giving it a
personified name, increased users’ tolerance for malfunctions and altered emotionally how
people approached the machine. Encouraging anthropomorphism through description can
boost the social function of a technology and encourage human interactions with a
nonhuman agent [Darling, 2015].

3 Objective

Based on the theoretical framework presented in Figure 1, we make the following predictions
about the relationships between the SEEK model and motivations to participate in citizen
science projects:

H1: Sociality and building community will be positively correlated.

H2: Effectance and perceived competence will be positively correlated.

H3: Elicited agent knowledge of air quality sampling and contributing to scientific
knowledge will be positively correlated.

Longer-term citizen science projects where participants use novel technological instruments
provide a prime opportunity to test our hypotheses about the relationships between
anthropomorphism and motivation to participate. For this study, we recruited participants in
the Citizen-Enabled Aerosol Measurements for Satellites (CEAMS) citizen science project.
CEAMS was a longer-term citizen science project that used novel technology [Ford et al.,
2019; Wendt et al., 2019, 2021]. The goal of CEAMS was to design a low-cost air quality
sampler that accurately measured regional air quality [Wendt et al., 2019; Ford et al., 2019].1

In this project, citizen scientists set up aerosol mass and optical depth (AMOD) samplers in
their backyards to measure local air quality for several weeks. The AMOD sampler, seen in
Figure 2, can be classified as a robot, as its programming carries out certain functions, the
sampler displays movements, and it functions automatically [Bartneck et al., 2020; Darling,
2015; DiSalvo et al., 2002].

1. The AMOD sampler was designed to provide high-quality, surface-based PM2.5 and aerosol optical depth (AOD)
measurements both in real-time, as well as time-averaged by using a traditional filter [Ford et al., 2019]. PM2.5 is
a measure of the mass of small aerosols at “breathing-level”, measuring 2.5 microns in diameter, and AOD is a
measure of how much light does not pass through the atmosphere due to the presence of aerosols. More
technical information about the sampler is available in Ford et al. [2019] and Wendt et al. [2019].
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Figure 2. Photo of AMOD sampler.

4 Methods

4.1 Anthropomorphizing the AMOD sampler

To study the relationship between anthropomorphism and participants’ motivation to
participate in CEAMS, we anthropomorphized the AMOD sampler. Some anthropomorphism
design elements were inspired by Frayer [2010]; for example, each AMOD sampler had a
“Hello My Name is ” sticker, to encourage participants to name their AMOD samplers
and make the sampler personal to them, which can encourage participants to develop an
attachment to their sampler [Frayer, 2010]. A second component of the anthropomorphism
prime included having the sampler perform a “wake up” sequence to show that it was ready
to take a sample. The AMOD’s wake-up sequence went as follows: the AMOD “rested” when
its indicator light was orange; the light turned green when the AMOD was ready to sample the
air, i.e. “wake up”. In addition, when the light turned green, the long, black turret on top of the
AMOD (Figure 2) rose to find the sun and the sampler spun around until it located the sun.
Once it found the sun, the AMOD stopped spinning, took measurements, lowered the turret,
and the indicator light turned orange to indicate the sampler was resting again.

A third component of the prime was the anthropomorphic language we used in the training
session when participants learned to operate their samplers and in the sampler user
manuals. During the session, we described the AMOD as a partner in data collection. For
example, we used phrases like “you are working together with the sampler to measure the
air”, and “make sure you remember to charge your partner so they can be ready to go for the
next week of measurements”. The user manuals with anthropomorphic language used similar
phrasing as in the training.

4.2 Variables

To measure the motivation to participate in citizen science variables in our hypotheses,
we adapted questions from the Motivation to Participate in Citizen Science Scale [Phillips
et al., 2017]. Perceived competence was measured using nine items, such as “I think I am
pretty good at taking air quality samples” and “It is important to me to feel that I took air
quality samples as well as or better than other participants”. Contributing to scientific
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knowledge was measured using four items, such as “I want to contribute to science” and
“I want to help scientists understand more about air quality”. Building community was
measured using one item (“I want to help my community). All items had a seven-point Likert
scale response set (1 = strongly disagree, 7 = strongly agree).

To measure the three SEEK variables in our hypotheses, we used items employed in other
studies that used the SEEK model [Epley et al., 2007; Epley, Waytz et al., 2008]. Effectance
was measured using two items (“I have a good idea of what I must do to participate” and
“The project’s goals have been clearly explained”). Elicited agent knowledge was measured
using seven items, such as “I understand how ground-level air quality is measured” and
“I understand how satellites measure air quality”. Sociality was measured using one item
(“I want to interact with research team members”. All items had a seven-point Likert scale
response set (1 = strongly disagree, 7 = strongly agree).

4.3 Pilot study

We conducted a pilot study for five weeks in Spring 2021 to determine whether our approach
to encouraging participants to anthropomorphize their AMOD samplers was effective and to
test the reliability of the scales used to measure the variables in our hypotheses.

The pilot study used a pre-test/post-test control group quasi-experimental design, where the
treatment group was encouraged to anthropomorphize their AMOD samplers while the
control group was not. We recruited 24 participants from the Community Collaborative Rain,
Hail and Snow Network (CoCoRaHS), a citizen science project that has been running since
1998. The sample consisted of 16 males and 8 females, with an average age of 61 years
(SD = 15 years, range: 54 years). The sample was 87.50% White, 4.17% Hispanic/Latino, and
8.33% preferred not to report.

Participants were randomly assigned to the control group (n = 12) or the treatment group
(anthropomorphized condition) (n = 12). Treatment group participants received AMOD
samplers that had the name stickers, while control group participants received samplers that
did not have these stickers. All participants attended a virtual training session where they
learned to operate their AMOD sampler, use the phone app to start sample collection, and
recharge their sampler; they also learned other project logistics. In treatment group training
sessions, project personnel used anthropomorphic language to describe and refer to the
sampler as outlined in the Anthropomorphizing the AMOD Sampler section. In the control
group training sessions, project personnel did not use anthropomorphic language. Training
sessions for all participants lasted 45 minutes to 1 hour; they were hosted on the virtual
meeting platform Zoom. After training sessions, all participants were emailed the PowerPoint
slides from their group’s session, PDF copies of their respective operation manuals (i.e.,
anthropomorphized language or control), and links to videos on how to operate the sampler
and interact with their air quality data.

Testing the anthropomorphism prime. To determine whether we were successful in
encouraging participants in the treatment group to anthropomorphize the AMOD sampler,
participants in both groups kept a weekly log about their sampling experiences. We
conducted a quantitative content analysis of the log entries. Log entries were coded for
presence/absence of participants indicating that the samplers (a) showed lifelikeness,
(b) had emotional states, (c) displayed intentions, (d) were referred to a name instead of as a
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machine (e.g., “Andy”) and (e) were referred to using gendered pronouns (e.g., he/him or
she/her). These five anthropomorphic language types have been used in previous content
analytic studies of anthropomorphism [Dorion, 2011; Fink et al., 2012; Sah & Peng, 2015;
Sealey & Oakley, 2013].

Lifelikeness was defined as language that depicted the sampler as being alive or having
(parts of) a body [Fink et al., 2012]. For example, participants referenced the AMODs as
having an arm, eyes, feet, “waking up”, or being alive/dead. Emotional states were defined as
writing that indicated the sampler had a feeling [Fink et al., 2012] such as sadness,
excitement, and anger. Displaying intention was defined as explanations for a process where
the machine could be perceived as having sentience for its actions [Dorion, 2011]. Examples
of intention included the use of verbs such as “wants”, “prefers”, “needs”, “gives”, “seems to
like”, or “trying” on behalf of the AMOD. The use of a name (besides “AMOD” or “sampler”)
was coded; examples included Optical Prime, WALL-E, Sunny, Dennis, Snoop Dogg, and Nova.
Last, the use of gendered pronouns (e.g., he/him or she/her) instead of neuter pronouns like
“it” was coded [Sah & Peng, 2015; Sealey & Oakley, 2013]. Two coders independently coded
15 entries from the weekly logs to test intercoder reliability for the anthropomorphic
language types. These entries were chosen randomly and they represented 15% of the log
entries (N = 98 log entries). To determine intercoder reliability for each anthropomorphic
language type, Krippendorff’s alpha (α) coefficients were calculated to measure the levels of
chance-adjusted agreement between the coders. As seen in Table 1, acceptable levels of
reliability were attained for all five language categories [Krippendorff, 2019].

Table 1. Intercoder reliability for pilot logs.

Anthropomorphic language type Alpha (α)

Lifelikeness 0.81

Emotion 1.00

Personality/Intention 0.79

Name 1.00

Pronouns 1.00

Once intercoder reliability was established, the rest of the weekly log entries for both the
control and treatment groups were coded. Once all the log entries were coded, then a score
was calculated for each log entry, and that score was based on the number of types of
anthropomorphic language that were in each log entry. A score could range from 0 to 5 each
week. These scores were averaged across all the log entries each participant had.
A comparison of the anthropomorphic language levels in the control group logs and the
treatment group logs indicates that the anthropomorphism primes worked. The level of
anthropomorphic language was significantly higher in the experimental group logs (M = 1.54,
SD = 1.25) than in the control group logs (M = 0.15, SD = 0.36), based on the results of a
Mann-Whitney test, U(Nexperimental = 50, Ncontrol = 48) = 355.00, z = –6.57, p < 0.01.

Testing measurement scale reliabilities. Four variables were measured using multiple
Likert scale questions. To test the reliability of the scales used to measure these four
variables, participants completed two questionnaires: before they attended their training
session, and at the end of the study (at the end of the fifth week). Each questionnaire took 10
to 15 minutes to complete and was administered via Qualtrics.
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Table 2. Cronbach’s alpha values and scale descriptive statistics for pilot study.

Scale Cronbach’s alpha Scale mean Standard deviation

Effectance 0.74 6.50 0.51

Perceived Competence 0.85 5.20 1.00

Elicited Agent Knowledge 0.82 5.76 0.66

Contributing to Scientific Knowledge 0.85 6.71 0.72

Due to the small sample size for the pilot, the entire group (n = 24) was combined to analyze
scale reliability. Cronbach’s alpha values and scale descriptive statistics from post-test of the
pilot study are presented in Table 2 since this questionnaire had every scale included.

To summarize, the results of the pilot study indicated that the anthropomorphism primes
were effective and that all scales used to measure four of the variables in the hypotheses
were reliable.

4.4 Main study

During Summer 2021, we recruited 30 participants from NASA’s Student Airborne Research
Program (SARP) to participate in the CEAMS citizen science project, which ran for eight
weeks. SARP is an eight-week program for college students interested in earth-systems
science. Normally, SARP participants spend eight weeks at one or more NASA Airborne
Science Program flying science laboratories at the Ames Research Center. However, because
of the COVID-19 pandemic, the program was conducted virtually during Summer 2021. An
advantage of SARP’s virtual status that summer was that we had the opportunity to recruit
participants from across the United States. In addition to the 28 students who agreed to
participate in CEAMS, two faculty members from SARP also participated. The sample
consisted of 10 males and 20 females with an average age of 22 years (SD = 5 years,
range = 36 years). The sample was 70% White/Caucasian, 10% Hispanic/Latino, 10% Asian,
and 10% Black/African American.2

Due to the collaborative nature of citizen science projects, especially longer-term projects
like CEAMS, having a classic control group can be operationally difficult. Consequently, we
used a within-subjects, pre-test/post-test, quasi-experimental design for the main study.
In the main study, all participants received AMOD samplers that had “Hello, my name
is ” stickers, and they attended virtual training sessions where project personnel
used anthropomorphic language to describe and refer to the sampler, as outlined in the
“Anthropomorphizing the AMOD Sampler” section. Training sessions for the main study
covered the same topics as those in the pilot study.

Virtual training sessions lasted between 45 minutes to 1 hour and were hosted on Zoom.
After the session, participants were emailed the PowerPoint slides from the session, PDF
copies of the operation manual, and links to videos on how to operate the sampler and
interact with their air quality data.

Participants completed three questionnaires: a pre-questionnaire before they underwent
training, a midpoint questionnaire at the end of the fourth week, and a post-test

2. While participants could select multiple ethnicities when filling out the questionnaires, they all chose one
selection.
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questionnaire at the end of the eighth week.3 The questionnaires took 10 to 15 minutes to
complete and were administered through Qualtrics. The items measuring sociality, building
community, perceived competence, and contributing to scientific knowledge appeared on
each questionnaire; the items measuring effectance and elicited agent knowledge appeared
on the midpoint and post-test questionnaires because participants had no knowledge of the
sampler or how to interact with it at the pre-test. In the main study, 25 entries from the
weekly logs were coded to establish intercoder reliability (N = 164). The Cronbach’s alphas
were reliable in the main study as well, which were calculated as the mean alpha across the
three times the variable was measured (Table 3). Variables measured by a single item did not
have an alpha value calculated.

Table 3. Cronbach’s alpha values and scale descriptive statistics for main study.

Scale Cronbach’s alpha Scale mean Standard deviation

Effectance 0.71 6.41 0.95

Perceived Competence 0.84 5.20 0.95

Elicited Agent Knowledge 0.85 5.29 1.01

Contributing to Scientific Knowledge 0.83 6.74 0.53

Building Community – 6.56 0.80

Sociality – 6.14 1.04

In addition to completing the three questionnaires, each participant kept a weekly log about
their sampling experience. Nearly all participants (93%) reported that they named their
AMODs. The average score for the logs in the main study was M = 0.60, SD = 0.89. While the
mean was lower than the control group in the pilot study (1.54), it is still higher than we had
for the control group in the pilot study (0.15). Also, across the 164 logs, the uses of
anthropomorphic language in the main study followed a similar pattern to the pilot study.
Using a name was the most frequent anthropomorphic language, being within 34.10% of
entries, followed by mentions of lifelikeness within 14.00% of the entries. Pronouns were
used in 7.90% of entries, with the least frequent variables being displaying intention (3.70%
of entries) and displaying emotions (2.40% of entries) on behalf of the samplers. Both the
average score and pattern of anthropomorphic language use in the logs suggests that the
anthropomorphism priming worked well enough for this main study.

5 Findings

To test H1, Spearman’s rank correlations were computed to assess the relationship between
Sociality and the Desire to Build Community. We tested this relationship across times, as
well as at the pre-test, midpoint, and post-test time periods, because there could be a
potential effect of time on the relationship between variables. The average scores for
sociality were relatively high with slight variations over time, averaging around 6 points on
the 7-point Likert scale (Table 4). The average scores for desire to build community were
similarly high, though more stable across times (Table 4). There was a positive, statistically
significant correlation between the two variables at all times r(28) = 0.46, p < 0.01 (Table 5).

To test H2, Spearman’s rank correlation was computed to assess the relationship between
Effectance and Perceived Competence. As these scales were only computed at the midpoint

3. The atmospheric data collected for this paper were gathered as part of a larger study [Wendt et al., 2023].
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Table 4. Means (M) and standard deviations (SD) for sociality and desire to build community across
times, at the pre-test (T1), midpoint (T2), and post-test (T3).

Sociality Desire to build community

M SD M SD

Pre-test (T1) 6.58 0.72 6.61 0.81

Midpoint (T2) 5.90 1.05 6.55 0.78

Post-test (T3) 5.89 1.05 6.52 0.85

Across times 6.14 1.04 6.56 0.80

Table 5. Spearman correlation between sociality and desire to build community across times, at the
pre-test (T1), midpoint (T2), and post-test (T3).

Spearman One-tailed significance

Sociality * Building Community 0.46∗∗ 0.00

Sociality T1 * Building Community T1 0.48∗∗ 0.00

Sociality T2 * Building Community T2 0.46∗∗ 0.00

Sociality T3 * Building Community T3 0.48∗∗ 0.00
∗∗ Correlation is statistically significant at p < 0.01.

Table 6. Means (M) and standard deviations (SD) for effectance and perceived competence across
times and at the midpoint (T2) and post-test (T3).

Effectance Perceived Competence

M SD M SD

Midpoint (T2) 6.38 1.12 5.06 0.93

Post-test (T3) 6.63 0.91 5.35 0.97

Across times 6.41 0.95 5.20 0.95

Table 7. Spearman correlation between effectance and perceived competence across times and at
the midpoint (T2) and post-test (T3).

Spearman One-tailed Significance

Effectance * Perceived Competence 0.26∗ 0.03

Effectance T2 * Perceived Competence T2 0.32∗ 0.04

Effectance T3 * Perceived Competence T3 0.13 0.27
∗ Correlation is statistically significant at p < 0.05.

and post-test, Spearman correlations were only run then. The average scores for effectance
were close to the high point of the Likert scale (7-point), with some variation between times
(Table 6). The average scores for perceived competence were around 5-points on the 7-point
scale, with some variation between times (Table 6). There was a positive, statistically
significant correlation between the variables across all times, r(28) = 0.26, p < 0.05, and at
the midpoint (T2), r(28) = 0.32, p < 0.05. There were positive trends, though statistically
nonsignificant correlations at the post-test (T3) (Table 7).

To test H3, Spearman’s rank correlation was computed to assess the relationship between
elicited agent knowledge and contributing to scientific knowledge. The average scores for
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Table 8. Means (M) and standard deviations (SD) for elicited agent knowledge and contributing to
scientific knowledge across times, at the pre-test (T1), midpoint (T2), and post-test (T3).

Elicited agent knowledge Contributing to Scientific Knowledge

M SD M SD

Pre-test (T1) 4.70 1.07 6.81 0.46

Midpoint (T2) 5.40 0.84 6.64 0.62

Post-test (T3) 5.86 0.73 6.78 0.52

Across times 5.29 1.01 6.74 0.53

Table 9. Spearman correlation between elicited agent knowledge and for contributing to scientific
knowledge across times, at the pre-test (T1), midpoint (T2), and post-test (T3).

Spearman One-tailed Significance

Elicited Agent Knowledge * Contributing to Scientific Knowledge 0.16 0.08

Elicited Agent Knowledge T1 * Contributing to Scientific Knowledge T1 0.15 0.22

Elicited Agent Knowledge T2 * Contributing to Scientific Knowledge T2 0.28 0.08

Elicited Agent Knowledge T3 * Contributing to Scientific Knowledge T3 0.39∗ 0.02
∗ Correlation is statistically significant at p < 0.05.

elicited agent knowledge were closer to the midpoint of the 7-point Likert scale, with some
variations between times (Table 8). The average scores for contributing to scientific
knowledge were at the upper bounds of the 7-point Likert scale and relatively similar
between times (Table 8). There was a positive trend, though statistically nonsignificant,
between the two variables across all times, at the pre-test (T1), and at the midpoint (T2).
There was a statistically significant, positive correlation at the post-test (T3), r(28) = 0.39,
p < 0.05 (Table 9).

6 Discussion

Maintaining volunteer participation for projects that take longer than a day is a
known challenge that researchers have faced with citizen science [e.g., Levontin et al., 2022;
Frensley et al., 2017]. Incorporating anthropomorphism into citizen science projects with
technology may boost participation rates. Our study provides partial experimental support
for the proposed relationships between the SEEK model of anthropomorphism determinants
(sociality, effectance, and elicited agent knowledge [Epley et al., 2007]) and motivations
to participate in citizen science projects, including desire to build community, perceived
competence, and the desire to contribute to scientific knowledge [e.g., Raddick et al.,
2013; Curtis, 2018; Tiago et al., 2017; Phillips et al., 2017]. Sociality and building community
were significantly correlated at each measurement point in the main study. Effectance and
perceived competence were significantly correlated at the midpoint and across the entire time
of the study. The correlation between elicited agent knowledge and contributing to scientific
knowledge was only supported at the post-test. Potential reasons that the statistical support
was not seen across each variable at all times of the study could include how some of the
variables were measured. The items used came from the literature [e.g., Phillips et al., 2017],
but did vary in the number of items across variables. For example, two variables were measured
with only a single item. Additionally, our sample was composed of participants that had
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high technological competency, as they were university students from scientific disciplines.
Their knowledge of air quality samplers, feelings towards technology, and desire to contribute
to science may have been different than other citizen scientists. Even so, the partial support
found in the conceptual model connecting anthropomorphism and motivation is promising.

We integrated anthropomorphism primes into the scientific instruments (e.g., AMOD sampler)
and communication materials of our citizen science project, like Frayer [2010]. This was
relatively easy, as adding name tags (and anthropomorphic language to describe the design
of our equipment such as the “wake-up” sequence) was simple to incorporate when planning
the study as well as to reinforce throughout the project by the research team. Especially as
technology can be more difficult to anthropomorphize than a living being like an animal
[Darling, 2015], this study provides an innovative strategy for increasing motivation to
participate in citizen science projects. Additionally, this study included a pilot test that
showed the anthropomorphism approach worked. While the scores for anthropomorphic
language were not the strongest in the logs, we did see a difference between the control and
the experimental groups. This effect, though small, was still seen in the quasi-experimental
design of the main study.

There were some limitations to this study that are important to address. First, this study had
a small sample size (n = 30), which could explain why we saw only partial support. There may
be a potential ceiling effect in this sample for the Likert scales used; while there were varied
response items, an increased sample size could help mitigate this effect. Future studies
could address this limitation by replicating the anthropomorphism primes with larger
experimental and control groups or multiple project periods per year. Additionally, due to
constraints imposed on the study design by the COVID-19 pandemic, participant interactions
were entirely virtual. A citizen science project that had more direct communication and
interaction between the project’s scientists and the anthropomorphism primed instruments
could have had a larger effect on the participants. For example, scores on sociality and
building community could have been affected if participants had weekly in-person
interactions with the research team, rather than with just interacting with their sampler on
their own and via email. If a project like this one were to be run again on a larger scale, we
would suggest having participants interact with the scientists on a regular basis to help
boost sociality. We also recommend including and testing additional items for building
community and sociality to have more robust measures. Additionally, participants’ effectance
scores could have been higher in this study because participants had to interact with their
samplers almost entirely on their own due to the remote status of the project. A different
citizen science project where participation was done more in groups with other participants
and researchers could have had participants use the samplers with less independence.

This work adds to the examples of studies where social science and participant outcomes
are intentional foci of citizen science projects [e.g., Pateman et al., 2021; Robinson et al.,
2021; Wright et al., 2015]. Incorporating anthropomorphism has a positive relationship with
motivation to participate, which is a highly desired attribute of citizen science [Curtis, 2018;
Frensley et al., 2017; Raddick et al., 2010; Tiago et al., 2017]. Future studies should test the
proposed model between anthropomorphism and motivation to participate further,
potentially creating more predictive models to explain other desired aspects of citizen
science, like engagement or volunteer retention over time. This study pushes the field of
citizen science towards understanding more about the human dimensions of participatory
research through the novel approach of anthropomorphism.
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7 Conclusion

Using a quasi-experimental design, our study shows promising, partial support for the
proposed model connecting motivation to participate and anthropomorphism, which was
experimentally framed in a technological citizen science project. As both the literature that
informs this study and the experimental results show, incorporating anthropomorphism into
the materials and instruments of a citizen science project should be tried by other project
managers to encourage participant motivation. It is important to understand what motivates
people to interact with new technologies, especially as we develop new instruments to
measure our world. Citizen science provides a participatory context to study how people
connect with technology. A better understanding of this can benefit both salaried and
volunteer participants.
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