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Abstract

A guiding theory for a continuous and cohesive discussion regarding generative artificial
intelligence (GenAI) in science communication is still unavailable. Here, we propose a framework
for characterizing, evaluating, and comparing AI-based information technologies in the context of
critical engagement with scientific information in online environments. Hierarchically
constructed, the framework observes technological properties, user experience, content
presentation, and the context in which the technology is being used. Understandable and
applicable for non-experts in AI systems, the framework affords a holistic yet practical assessment
of various AI-based information technologies, providing both a reflection aid and a conceptual
baseline for scholarly references.
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1  Rationale

The public introduction of ChatGPT and other generative artificial intelligence (GenAI) since that
time has marked a significant transformation in mediated communication [Hepp et al., 2023;
Schäfer, 2023]. GenAI is “a class of machine learning technology that learns to generate new
data from training data” [Houde et al., 2020, p. 1]. It has the potential to redefine the
production and dissemination of knowledge in society [Hepp et al., 2023; Jungherr
& Schroeder, 2023], including scientific knowledge [Alvarez et al., 2024; Biyela et al.,
2024].


The disruptive nature of GenAI extends to science communication [Schäfer, 2023], as it
constitutes a new kind of science communicator [see Guzman & Lewis, 2020] and a new content
production tool for existing science communicators [Alvarez et al., 2024; Biyela et al., 2024].
Compared to previous communication-AI technologies, GenAI has greater agency [Guzman &
Lewis, 2020; Hepp et al., 2023]. Thus, it plays an active role in knowledge formation and
information interpretation and can take a greater part in individuals’ epistemic networks
[Feinstein & Baram-Tsabari, 2024]. With individuals using GenAI to access scientific
information [Greussing et al., 2024], research needs to carefully consider the emerging
potentials, uses, and broader implications associated with AI technologies [Schäfer,
2023] — considering both the technologies currently in use and those that are yet to
come.


As GenAI constitutes a new kind of science communicator, the intersection of AI technology and
critical engagement with scientific information becomes more pressing. We consider critical
engagement with scientific information as an active and thoughtful interaction with
science-related content, often requiring the evaluation of the content’s credibility, accuracy, and
relevance [see Osborne & Pimentel, 2022; Lin, 2014]. Addressing the conjuncture of AI technology
and critical engagement with scientific information is relevant to multiple research avenues in
science communication, including online engagement with scientific information on
social media and science journalism [e.g., Spitale, Biller-Andorno & Germani, 2023;
Tatalovic, 2018]. It also responds to both the crisis of misinformation dissemination [West
& Bergstrom, 2021] and the calls for scholarly attention to GenAI’s susceptibility to
“hallucinations” [Kidd & Birhane, 2023], wherein the AI provides grammatically and
contextually valid, confident responses that are, nonetheless, inaccurate or false [Bang et al.,
2023].


The importance of studying critical engagement with scientific information through GenAI points
to two forming gaps. First, a theoretical gap, as we lack an overbridging conceptualization that
will allow science communication researchers to link newly gained insights regarding GenAI with
previous knowledge about more traditional technologies. Second, a practical gap, as we are
missing a simple yet holistic framework that will afford and guide non-experts in AI systems in
making sense of and differentiating between AI technologies. Work meeting these gaps would
assist science communication researchers needing to identify and select technologies that are best
suited for a particular research project, or for science communication educators who want
to present and discuss the characteristics of a specific GenAI technology with their
students.


Indeed, existing theories provide valuable insights. However, they are limited to either more
traditional technologies [e.g., Taddicken & Krämer, 2021; Hendriks et al., 2020], particular uses
[e.g., Lin, 2023], or more general insights not necessarily relevant to science communication [e.g.,
Hancock, Naaman & Levy, 2020; Lo, 2023; Sundar, 2020]. To date, we are missing a relevant
conceptual framework that will support and guide non-experts in AI systems in how to make
sense of and differentiate GenAI technologies.





2  Objective

The paper proposes a conceptual framework that has a two-fold aim: to encourage
a more consistent and concatenate discourse regarding science communication and
AI-based information technologies, and to equip non-experts in AI systems with a practical
tool to understand and distinguish between AI technologies, recent and upcoming
ones.


As a starting point towards developing an efficient and overarching conceptual framework that
others might improve on, we draw inspiration and relevant concepts from theoretical and
empirical literature from various fields. Among the theories and models we consulted are the
heuristic model of online engagement with scientific information [Hendriks et al., 2020] and
criteria for explaining the role of the internet [Lopez & Olvera-Lobo, 2018] from science
communication studies, the fast and frugal model [Osborne & Pimentel, 2022] and the content-source
integration model [Stadtler & Bromme, 2014] from science education studies, the TIME
theory [Sundar, Jia, Waddell & Huang, 2015] and the HAII model [Sundar, 2020] from
human-computer interaction (HCI) studies, as well as the three-tiered framework for evaluating
relevancy and credibility during online inquiry [Forzani, 2020] and the curriculum design
principles [McGrew & Breakstone, 2023] from education studies. We wove the extracted
relevant and diversified concepts into a framework that brings together a wide range
of perspectives. While this process does not cater for developing a coherent theory,
the conceptual framework we have developed could be put to use by researchers and
practitioners in various fields and applied to various GenAI technologies for various
purposes.


Additionally, the framework is designed to encompass a broad spectrum of AI-based information
technologies, extending beyond the scope of GenAI or specific large language models (LLMs) such
as ChatGPT. In other words, the framework aims to be applicable to characterizing, evaluating,
and comparing recent AI technologies, more traditional information technologies (e.g., Google
Search, Wikipedia), and even upcoming ones; it is also designed to be applicable to
textual-base information technologies as well as multimodal ones (e.g., Gemini,1 Copilot2).
The framework has been designed to characterize, evaluate, and compare technologies
(i.e., models, platforms, applications, software, etc.) that enable individuals to access
scientific information online, in contrast to technologies that do not retrieve or generate
scientific information, like word processors or painters devoid of GenAI components. We
define the technologies that can be characterized, evaluated, and compared using this
conceptual framework as computer systems, software, and networks that facilitate the
dissemination of scientific information to the public [‘Information Technology’, 2024;
Nisbet & Scheufele, 2009]. In terms of the conceptual framework, we define AI as “a
machine-based system that can, for a given set of human-defined objectives, make predictions,
recommendations or decisions influencing real or virtual environments” [OECD, 2019, p.
15].


The conceptual framework described in this paper intends to serve as a reflective guide,
facilitating better understanding and accurate descriptions of AI-based information technologies
in their applications for critical engagement with scientific information online. In turn, researchers
and practitioners who use the framework may informedly select and better utilize said
technologies.





3  The framework

The framework is hierarchically structured, focusing on the technology while accounting for the
particularities of the socio-demographic contexts in which it is being used. Similarly to a
theoretical rubric, it lists selected criteria that contemplate basic technological features, features
that may stimulate emotional and motivational responses, and features that might impact
different tactics for critical evaluation of scientific information. This section first considers
the context in which the technology is being used, then deconstructing the technology
itself.





3.1  The context

Employing an agile approach, the framework first factors in who is using the technology, for what
purpose, and in what specific setting. To illustrate, a technology’s suitability may differ when it is
intended to assist a Zulu-speaking 4th grader in composing a brief essay on available energy
sources, compared to when expected to aid an English-speaking young adult in deciding whether
to adopt a fruitarian lifestyle. Consequently, the framework recognizes the impact of
contextual factors on the evaluation and utilization of AI-based information technologies
[Lopez & Olvera-Lobo, 2018; Sartori & Bocca, 2023; Suchman, Blomberg, Orr & Trigg,
1999].


From a science communication perspective, the characterization of an AI-based information
technology will unfold in distinct ways, contingent upon the specific socio-demographic,
epistemic, behavioral, and cultural contexts of the technology’s use [Canfield et al., 2020]. Research
shows, for instance, that information technologies can elicit different responses among different age
groups [Chattaraman, Kwon, Gilbert & Ross, 2019; Pradhan, Lazar & Findlater, 2020]. Additionally,
cultural and regional differences impact the access to relevant and appropriate information
about science [Dabran-Zivan et al., 2023]. Besides these macro-level contextual factors, the impact
of critical engagement with scientific information through AI-based information technologies
is also shaped by individual and situational factors. Among these factors are individuals’ levels
of different literacies [Sharon & Baram-Tsabari, 2020; Lamb, Polman, Newman & Smith, 2014],
attitudes toward artificial intelligence, along with prior knowledge about and experiences with
AI technology [Bao et al., 2022]. Notably, prior experiences hold particular significance for shaping
expectations toward AI-based information technologies [Fortunati, Edwards, Manganelli, Edwards
& de Luca, 2022], encompassing not only direct encounters with AI systems but also indirect ones,
such as the exposure to public narratives surrounding the technology, fueled by advertisement,
media representations, and pop culture [Natale & Ballatore, 2020; Sartori & Bocca, 2023].


With these contextual factors in mind, the users of the conceptual framework can then
systematically work through the technological considerations, which are described in the next
sections.





3.2  The technology

To provide a wide and structured perspective to characterizing the technology, the conceptual
framework adheres to the fundamental elements of communication [Lasswell, 1948]:
communicator, channel, receiver, and message. Considering that recent AI systems function as
both a communicator and a channel [Guzman & Lewis, 2020], the remaining framework combines
three lenses: technological properties (i.e., communicator and channel), user experience (i.e.,
receiver), and content presentation (i.e., message). While all three lenses focus on technological
features, the user experience lens contemplates features that affect how users perceive the
technology and its use, and the content presentation lens contemplates features that can impact
the critical evaluation of the provided information. Although the distinction between lenses may
seem artificially separated, this structured approach promotes deliberate reflection from different
perspectives. In short, these lenses establish complementary and interrelated points of view,
consisting of distinct dimensions (see Table 1). (For a more detailed account of the concepts,
their use, and sources incorporated into this part of the framework, see Supplementary
material.)
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Table 1: Lenses, dimensions, and criteria to characterize AI-based information
technologies. 



3.3  First lens: technological properties

Although science communication researchers may be untrained to fully comprehend the
inner workings of an AI system, they can still look at its fundamental components,
objectives, and capabilities [see Taddicken & Krämer, 2021; Fernandes, Rodrigues &
Ferreira, 2020] to gain a better understanding of the AI’s strengths and limitations.
We propose two key dimensions: basic technological properties and qualities of the
output. Their significance is rooted in theoretical and empirical work that addresses
technological characteristics of AI systems [e.g., Bang et al., 2023; OECD, 2022, 2023; Zuccon &
Koopman, 2023] and information and communication technologies (ICTs) in the context of
critical engagement with scientific information [e.g., Hendriks et al., 2020; Lamb et al.,
2014].


The basic technological properties dimension characterizes the AI’s main objectives (i.e., what it is
designed to do well), its knowledge base (i.e., what kind of information it relies on), and its
capabilities in science and math (i.e., how well it can answer science-related questions and solve
mathematical problems). Although not deriving directly from science communication, it is
important to consider the technological structures of the technology in use, as it determines the
structure of communication [Taddicken & Krämer, 2021, p. 4]. In greater detail, these criteria
consider what sources the AI draws from, the recency of the data it relies on, and whether it
prioritizes information from more reliable sources, such as scientific literature and reputable
journalistic outlets [see Barzilai et al., 2023; Polman, Newman, Saul & Farrar, 2014]. These
characteristics determine a wide range of the technology’s capabilities, performance, and
applicability [OECD, 2022]. They also inform on the potential suitability of a technology for a
specific task and the degree to which it can support valuable engagement with scientific
information [see Hoffmann, 2019; OECD, 2023; Zajko, 2021]. For instance, LLMs such as
ChatGPT were trained on — and therefore rely on — millions of web pages, including less
scientifically reliable sources [see Schäfer, 2023]. These LLMs are designed to generate
responses based on probabilistic predictions [Chan, 2023] and outperform the majority
of the human population in science but less so in mathematics [OECD, 2023]. These
characteristics are translated to a set of capabilities and limitations that differ dramatically
from those, for example, of Wolfram |Alpha,3 which is designed to solve and explain
mathematics problems, or of Elicit,4 which searches for, and extracts text from, academic
publications.


The output’s qualities dimension addresses media richness (i.e., what modes of information it
provides and supports), multitasking (i.e., how many and what kind of tasks it can perform), and
the quality of the technology’s outputs (i.e., whether and to what degree the technology is
susceptible to delivering irrelevant or inaccurate information).


Different AI technologies can provide different modes of communication and interaction [see
Dambanemuya & Diakopoulos, 2021; Sundar & Lee, 2022]. According to Media Richness Theory
[Daft, Lengel & Trevino, 1987], specific technological properties can enable clearer communication
[Daft et al., 1987; Ishii, Lyons & Carr, 2019], thereby supporting understanding in diverse ways.
We suggest applying two criteria relevant for AI-based information technologies and science
communication: the ability to transmit multiple cues and language variety [see also
Hendriks et al., 2020; Tang, 2024]. Regarding the first criterion, AI technologies that
allow for voice communication, for instance, add another layer of richness, as they
can convey tone and emphasis. A richer AI interface, in turn, will not only support
understanding, but may also provide a more engaging interaction and encourage users’
motivation to use the technology [Liu, Liao & Pratt, 2009]. Regarding the latter, we
suggest asking not only how many and which languages the technology supports,
or to what degree, but also if it can mitigate low levels of foundational literacies [see
Sharon & Baram-Tsabari, 2020] and the digital language divide [Dabran-Zivan et al.,
2023].


Multitasking considers the technology’s ability “to carry out a multitude of tasks without specific
fine-tuning” [Bang et al., 2023, p. 4]. This ability has become a significant characteristic of current
technologies, especially in GenAI [Schäfer, 2023]. This prompts us to consider the number and
range of tasks the technology can undertake (whether simultaneously or not) and how well it
performs each task. Such tasks can encompass generating textual answers (e.g., explaining human
cells’ structure), translating textual descriptions into visual depictions (e.g., visually depicting
human cells’ structure), retrieving information (e.g., searching the web for additional diagrams
of human cells), etc. Technologies that can simply and quickly switch between tasks
may function as a “one-stop shop”, allowing users to complete different tasks without
the need for multiple applications or devices. Thus, they can simplify both the use of
technology and the engagement with scientific information. Adding to the main objective
criterion in the previous dimension, the multitasking dimension illuminates what else
the technology is good for and whether the context criteria align with the technology’s
capacity.


Considering the output’s quality — understood, inter alia, as the accuracy and relevance of the
information provided — has long been a central concern in science communication research
[Bucchi & Trench, 2014; Olesk et al., 2021]. Said concern has become even more significant with
individuals’ use of GenAI for science-related content [Greussing et al., 2024] as, “[w]ith the advent
of GenAI, the misinformation dilemma has escalated [Shin, Koerber & Lim, 2024, p. 2]. Hence, the
framework evaluates whether the technology produces accurate, relevant [see Lamb et al., 2014],
and clear outputs in general as well as when faced with either vague (i.e., “what about …”)
or detailed misinformed queries or prompts [Dambanemuya & Diakopoulos, 2021;
Zuccon & Koopman, 2023]. Such inputs are prone to result in inaccurate or irrelevant
information.


Overall, examining AI technologies through the lens of technological properties offers valuable
insights into the technology’s purpose, capabilities and limitations, including the type
of information it can provide, how it can support understanding, and its potential to
misinform.





3.4  Second lens: user experience

Emotion and motivation are key factors in facilitating and encouraging public engagement
with scientific information [Dubovi & Tabak, 2021; Hendriks et al., 2020], as are trust in
scientific information and its sources [Taddicken & Krämer, 2021]. However, theories in
science communication link emotional engagement and trust with human or institutional
actors [e.g., Taddicken & Krämer, 2021; Dubovi & Tabak, 2021; Weingart & Guenther,
2016]. Hence, we turn to theories and models in HCI literature and adopt concepts
that characterize the technology and are relevant for online engagement with scientific
information.


System and interface design affects users’ satisfaction with, perception of, and emotional response
to the overall engagement with the technology and the information it mediates [Lopez &
Olvera-Lobo, 2018; Nielsen, 2024; Sundar, 2020]. Furthermore, the technological features structure
how users interact with scientific information in online environments, even what role users can
take [Taddicken & Krämer, 2021]. The second lens, therefore, addresses technological
features that can affect how users experience the technology and, consequently, how they
engage with information about science. More specifically, they inform inquiries into
how individuals are being afforded to use and perceive both the technology and the
information it provides. The users addressed in this lens are understood as any individual or
group interacting with AI-based information technologies to engage with scientific
information. The selected mixture of theoretical concepts informing this lens lean into
literature on science communication [e.g., Hendriks et al., 2020], science education [e.g.,
Long & Magerko, 2020], human-computer interaction (HCI) [e.g., Sundar, 2020], user
experience (UX) [e.g., Nielsen, 2024], and of AI systems [e.g., Wang, Camacho, Jing & Goel,
2022].


Altogether, the user experience lens combines four dimensions, as detailed below: interactivity,
user agency, transparency, and costs and benefits. These selected dimensions, while probably
incomplete, are designed to agree with both Hendriks and colleagues’ [2020] definition of online
engagement with scientific information as well as Sundar’s [2020] model for human-AI
interaction. The first concentrates on “goal-directed [ …] and effortful activity in dealing with
scientific information in online information environments” [Hendriks et al., 2020, p. 2].
The latter provides “a deeper understanding of the human experience of algorithms in
general and the psychology of human-AI interaction in particular” [Sundar, 2020, p.
74].


Interactivity emerges as one of the most significant factors in explaining technologies’ uses and
effects [Sundar, 2020], for instance, by affecting users’ learning and remembering of information
[Greussing, Kessler & Boomgaarden, 2020]. This is relevant not only to new media in
general, but also to online engagement with scientific information in particular [Hendriks
et al., 2020]. Interactivity refers to the reciprocal exchange of information between the
participants involved in an interaction [e.g., Liu & Shrum, 2002]. As an experiential construct,
interactivity has three facets [Sohn, 2011] — sensory, semantic, and behavioral — that
contribute to the users’ experience. Thus, a communication situation can be perceived as
interactive not only through behavioral engagement (e.g., clicking on a link or writing a
prompt), but also through the breadth and depth of the sensory experience (e.g., the
presence of nonverbal elements such as pictures) or rhetorical communication (e.g.,
receiving personally relevant messages that make one feel recognized by the interaction
partner).


Interactivity cues embedded in technology contribute to the feeling of natural, face-to-face
communication, thus molding the mode and tone of science communication [Fähnrich, 2021; see
also Lopez & Olvera-Lobo, 2018], especially when the technology exhibits human-like
characteristics [Chong, Yu, Keeling & de Ruyter, 2021; Gambino, Fox & Ratan, 2020;
Sundar, 2020]. Anthropomorphism refers to attributing human traits or qualities to
non-human entities, indicating their potential for social interaction [Gambino et al., 2020; see
also Wang et al., 2022]. It is elicited in various ways, such as by the AI’s appearance
(e.g., visual or auditory cues, having a name or gender), mode of interactivity (e.g.,
conversational abilities), or interactivity style (i.e., is it task-oriented, more formal, and
more purposeful, or is it social-oriented, more casual, and social-emotional affective?).
Anthropomorphism plays a key role in shaping how users perceive AI technologies. For
example, trust can be fostered by task-oriented, purposeful communication [Keeling,
McGoldrick & Beatty, 2010], which also encourages superior cognitive outcomes and
self-efficacy, particularly among users with low digital literacy [Chattaraman et al., 2019].
In addition, anthropomorphism has been found to evoke perceived social presence,
credibility, and competence, and to influence users’ “behavioral intention, compliance with
advice, and satisfaction” [Chong et al., 2021, p. 5]. Although these aspects centered on
technology, their impact for engagement with scientific information is meaningful [see
Taddicken & Krämer, 2021; Dubovi & Tabak, 2021; Weingart & Guenther, 2016]. While
beneficial, anthropomorphism also presents a risk: the perceived trustworthiness or
competence could conceal the actual technical limitations of the technology (see lens
1).


Interactivity further concerns guidance, which is closely related to what UX principles
term learnability: the user’s ability to use a new interface or technology they have not
seen before [Nielsen, 1993, 2024]. Adapting this concept to critical engagement with
scientific information in online environments, an AI-based information technology
can, and perhaps should, mitigate unskilled use, encourage collaboration and social
interaction around science, and inspire further engagement with scientific information [see
Hendriks et al., 2020; Long & Magerko, 2020]. For instance, while advanced search options
in Google Search are available only through the settings menu at the bottom of the
page, Microsoft’s Copilot provides some instructions and examples on how it could be
used.


User agency is a second “hallmark of successful user experience with personalized services”
[Sundar, 2020, p. 82], influencing online engagement with scientific information [Hendriks et al.,
2020]. Rooted in the fundamental human need for autonomy, user agency provides individuals
with a sense of ownership and authority in their interactions with technology [Kang & Lou, 2022].
This fundamental need, however, is redefined in automatic AI-based information environments
[Hepp et al., 2023]. It is about users’ experience of control over their actions and, through these
actions, control over the behavior and outputs of the technology [Coyle, Moore, Kristensson,
Fletcher & Blackwell, 2012].


While users’ agency involves multiple factors, we suggest focusing on three criteria concerning
previous sessions, personalization, and suitability. These criteria provide multifaceted yet simple
insights into users’ ability to mold or redesign their engagement with scientific information before
and after its occurrence. Thus, users’ ability to refine or delete their previous interactions will give
them greater control and confidence [Nielsen, 2024], which can then cultivate opportunities
to learn new information [Kang & Sundar, 2016]. Also augmenting users’ control is
the ability to personalize the system [Sundar, 2020; see also Hendriks et al., 2020] by
feedbacking the technology and adjusting its settings (e.g., selecting conversation style in
Microsoft’s Copilot). Accommodating individual preferences should be carefully considered
as it might create conflict with privacy implications [see Brewer, Pierce, Upadhyay &
Park, 2022]. That being said, users’ agency is also critically dependent on the system’s
suitability to its audiences and their needs [see Long & Magerko, 2020]. To enhance users’
agency and foster critical engagement with scientific information, the technology should
ensure compatibility with diverse audiences, including people with special needs or
children.


Transparency is the third dimension of user experience. Indeed, assessing transparency is not
always easy, as its manifestations are not always apparent due to design, commercial, and other
considerations. Nevertheless, assessing transparency is part of the framework as it can shape the
quality of human-AI interaction [Sundar, 2020, p. 80] and, in turn, users’ engagement with
scientific information [Shin et al., 2024]. We address the concept of transparency from a user
experience perspective rather than from an ethical or legal one, contemplating how and what
users can learn about the AI they use and its operation. The transparency dimension first
distinguishes between thin and thick AIs. While thin AIs are systems whose involvement is not
apparent (for example, autocomplete suggestions, personalization algorithms), the
presence of thick AIs “is more apparent on the interface” [Sundar & Lee, 2022, p. 382]. The
transparency dimension also considers whether the technology clearly communicates the
system’s capabilities and limitations [see Nielsen, 2024; Sundar & Lee, 2022]. This is of
particular importance for science communication, as misinformation generated by AI
might seem very compelling to users [Spitale et al., 2023]. Finally, the transparency
triangle considers the AI’s explainability, i.e., human understandable descriptions of the
AI’s rational and decision process [Doran, Schulz & Besold, 2017; Long & Magerko,
2020; OECD, 2022]. Explainability allows users to “appropriately calibrate trust and
reliance [in the technology], to detect potential errors in machine reasoning, and to
further help audit the technology” [Miller, Hoffman, Amir & Holzinger, 2022, p. 1]. These
criteria, while partial, illuminate how users can learn not only about the presence of an AI
system, but also about its capabilities and limitations, and the practical aspects of how it
operates.


The concept of costs and benefits considers the ability of the technology “to advance the interest of
the user at minimal cost” [Sundar, 2020, p. 80], thus corresponding with the effortfulness that
characterizes critical engagement with scientific information online [Hendriks et al., 2020; Lopez &
Olvera-Lobo, 2018]. In this context, Sundar [2020, p. 83] explains that “user actions on the
interface, such as searching, choosing settings and making decisions, are costs against which the
benefits of AI media, such as tailored content and convenience, would be assessed”. We suggest,
therefore, to evaluate the extent to which the technology eases information searching, speeds its
processing, and expands its scope. One simple criterion for such evaluation is the number of
“steps” (e.g., prompting, querying, opening additional tabs, reading different web pages,
etc.) required of users to complete a task [see OECD, 2021; Perez et al., 2015]. For example,
while searching for science information using Google’s Gemini only requires phrasing a
prompt, doing the same using Google Search requires phrasing a query, evaluating the
relevance and quality of possible sources, selecting some, reading them, and integrating the
information [see Hendriks et al., 2020]. Beyond this simplistic numeric criterion, from
an information literacy perspective, the costs and benefits dimension also considers
the complexity of the task, evaluating the skill set and skill level required to complete
it.


In conclusion, this lens aims to bring into focus whether and how technological features contribute
to users’ engagement with scientific information [see Evans & Gibbons, 2007; Hendriks et al.,
2020]. According to Nielsen [2024], a technology can allow users control and freedom by catering
to both inexperienced and experienced users, providing continuous interaction that leverages
users’ language and communication, while affording multiple easy ways to correct or undo their
mistakes. Such a technology will foster users’ positive experience and, in turn, a more efficient and
satisfying engagement with scientific information [see Hendriks et al., 2020; Schäfer,
2023].





3.5  Third lens: content presentation

Research shows that scientific disinformation produced by GenAI can be more convincing than
that produced by humans [Spitale et al., 2023]. Hence, practicing critical engagement with
scientific information online is crucial and involves, inter alia, evaluating the credibility of the
information source, the reasoning components and structure, and the overall argument in light of
the scientific consensus [McGrew & Breakstone, 2023; Osborne & Pimentel, 2022; see also Halpern,
2014]. This third lens addresses whether, how, and to what extent the presentation of
the content (rather than the capabilities of users) supports these practices of critical
engagement with scientific information in online environments. These aspects also echo
theories in science communication that describe tactics for minimizing uncertainty in
public engagement with scientific information [Lammers, Ferrari, Wenmackers, Pattyn
& Van de Walle, 2024]. Drawing from literature on science education [e.g., Stadtler &
Bromme, 2014], critical thinking [e.g., Halpern, 2014], and digital literacy [e.g., McGrew &
Breakstone, 2023], this part of the framework informs inquiries into whether the technology
equips its users with opportunities to critically evaluate the reliability, validity, and
accuracy of the information retrieved. Corresponding with Osborne and Pimental’s
[2022] “fast and frugal” heuristic model, the content presentation lens addresses three
fundamental dimensions — sources, reasoning, and consensus — with the following
details.


Evaluating source credibility is an efficient indicator of information reliability [McGrew &
Breakstone, 2023; Osborne & Pimentel, 2022; see also Lopez & Olvera-Lobo, 2018] when content
knowledge of the discussed issue is insufficient [Forzani, 2020]. This often involves assessing the
expertise or benevolence of the source [Stadtler & Bromme, 2014] or investigating what other
reliable sources say about them [McGrew & Breakstone, 2023; Osborne & Pimentel,
2022]. These assessments, however, are irrelevant for GenAI technologies that function
as the source. Hence, addressing source evaluation becomes crucial for scholars and
educators, as it impacts the potential uses of such tools. Following these lines, the source
dimension focuses on two criteria: (1) whether the content presentation tends to identify
relevant information sources (e.g., “according to the World Health Organization”), which
will allow users to evaluate if the information can be trusted [Bromme, Kienhues &
Porsch, 2010]; and (2) whether the output provides a direct link to a specific source (e.g.,
hyperlinks, URLs, articles’ titles, etc.), thus enabling users to corroborate the information
[Barzilai, Thomm & Shlomi-Elooz, 2020] and assess both information reliability and
accuracy.


Reasoning evaluation is the second dimension under the content presentation lens. In the words of
Tseng and colleagues [2021, p. 1156], evaluating scientific claims “involve[s] the assessment of
scientific arguments for validity of reasoning and the quality of evidence that is used”.
Furthermore, reasoning evaluation can become a decisive practice in the case of recent GenAI
technologies that often neglect identifying the source or rather do so incorrectly. Hence, although
evaluating the scientific claims themselves might be more complicated for non-experts
[Osborne & Pimentel, 2022], evaluating the argumentation may become a valuable
avenue to establish information credibility [Barzilai et al., 2020; Forzani, 2020], especially
when information about the source is scarce or invalid [Dabran-Zivan & Baram-Tsabari,
n.d.]. To allow users to evaluate the scientific claims and reappraise the plausibility of
alternative explanations [Tseng et al., 2021; see also Halpern, 2014; McGrew & Breakstone,
2023], the reasoning dimension prompts users to consider the inclusion of evidence,
scientific or otherwise, and whether the argument addresses alternative claims [Halpern,
2014].


Scientific consensus is the third dimension, functioning as “the public benchmark of
reliability” [Osborne & Pimentel, 2022, p. 247], and as an influential factor in science
communication [Chinn, Lane & Hart, 2018; van Stekelenburg, Schaap, Veling, van ’t Riet &
Buijzen, 2022]. The consensus embodies what a decisive majority of experts agree on.
As such, it portrays “the product of extensive empirical work that has been examined
critically from many perspectives”, constituting “our best bet of what to trust” [Osborne &
Pimentel, 2022, p. 247]. This dimension asks whether the technology supports easy
understanding of the scientific consensus — for instance, by often addressing it directly
— and whether the technology allows users to learn about the specifics of scientific
disagreements.


To summarize, the framework suggests observing first the context, on macro and micro levels,
followed by the technology, offering guiding criteria to characterize the basic technological
properties, the user experience, and the content presentation.





4  To conclude

As GenAI technologies “themselves [are] becoming communicative participants” [Hepp et al.,
2023, p. 42], they continue to shape and transform the way information is disseminated and
consumed. Thus, understanding the underlying mechanisms and implications of these systems
becomes crucial. In this paper, we proposed a conceptual framework that enables science
communication researchers and educators to effectively characterize, evaluate, and compare
AI-based information technologies in the context of critical engagement of scientific
information.


Practically, this framework allows researchers and educators to understand and reflect on the
strengths, weaknesses, and workings of AI technologies in science communication. From a
theoretical standpoint, the framework equips researchers to keep pace with the rapid
developments in the AI terrain and fosters cumulative research rather than isolated
investigations.


Because of the recency of the technology and the lack of empirically tested theories regarding
critical engagement with scientific information through AI-based information technologies,
naturally, this framework is incomplete, and more work is needed to determine its usefulness.
Furthermore, as a multidisciplinary endeavour, drawing on theoretical perspectives from many
disciplines, the framework might not provide a coherent theory. Hence, first and foremost, this
effort hopes to stir scholarly discussion toward further development and finetuning of the
framework, leading to a more refined and encompassing tool for future research and
practice.


This framework represents an initial step. It is a reflection aid designed to support researchers and
educators with a limited understanding of AI systems in selecting relevant technologies or
presenting them as most suitable to a particular context. By highlighting important dimensions of
critical engagement with scientific information through AI, the framework may lead to developing
relevant strategies for critical engagement with AI-generated content, and for identifying
gaps in existing empirical research, including both known unknowns and actual blind
spots.
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Basic properties

Output’s qualities

Interactivity

Users’ agency

Transparency

Costs and benefits

Source

Reasoning

Consensus

Criteria

Main objective

Knowledge base: source, recency, and prioritization
Capabilities in science and math

Media richness: multiple cues and language variety
Multitasking

Accuracy, relevance, and clarity

Anthropomorphism: appearance, mode of interactivity, and interactivity style

Guidance: toward skilled use, collaboration, and further exploration
Previous sessions: access, continuity, alteration, and deletion
Personalization: allowing users’ feedback and changing settings

Suitability: for different audiences and their needs

Al thickness

Al's boundaries: capabilities and limitations

Explainability

Engagement complexity

Mitigating information literacy: source selection and information integration

Identification

Information about the source

Evidence: the evidence included, their verifiability, and their nature
Comprehensiveness: detailed argumentation and presenting alternatives
The agreement

The disagreement
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